"BUILDING INNOVATION DESIGN ASSISTANCE: EMBODIED CARBON LIFECYCLE ANALYSIS ASSISTAN ICE"

1300 SYCAMORE DRIVE SE DOEE LCA GRANT DOCUMENT

REDBRICK LMD 11.09.2021 REV **A** 1

GRANT TEAM

Holly Lennihan Former, Director of Sustainability HICKOK COLE

Elba Morales Associate Principal Director of Design - HICKOK COLE

Kerron Miller Senior Associate Sr Project Architect - HICKOK COLE

Linda Toth Associate Senior Sustainability Director - ARUP

Spencer Schrandt Graduate Engineer Structural - ARUP

Matt O'Malley Precontruction & Commercial Market Lead - DPR

TABLE OF CONTENTS

	A2
WHAT IS EMBODIED CARBON?	A4 - 6
GRANT PURPOSE + ACTIVITIES FUNDED	A7 - 8
	A9 - 10
BUILDING SITE	A11 - 12
STRUCTURE, 3 OPTIONS	A13 -15
QUANTITIES FOR OPTIONS	A13
MIX FOR LOW CARBON CONCRETE	A14
ONE CLICK LCA DATA	A15
ARCHITECTURAL ENVELOPE, PRIMARY	A16 - 42
ANNOTATED PLANS + ELEVATIONS	A16 - 24
AREA CALCULATIONS	A25
ONE CLICK LCA DATA	A26 - 29
EPD	A30 - 42
ENVELOPE + STRUCTURE, COMBINED LCA DATA	A43 - 45
PRICING, ALL OPTIONS	A46 - 48
CONCLUSIONS	A49
APPENDIX, ATTACHMENT NO. 4	A50 - 51

1300 SYCAMORE DRIVE SE
DOEE LCA GRANT DOCUMENTREDBRICK LMD
11.09.2021 REVA

A. WHAT IS EMBODIED CARBON?

Embodied carbon is a metric of how much carbon is associated with products.

In this graphic, we can see where CO2 comes from, at different stages for concrete.

Embodied carbon is the sum of all of these amounts of CO2 that are produced along the way.

This tells us how much greenhouse gases are released into the atmosphere and how much a project contributes to global warming.

©2018 2030 Inc./Architecture 2030. All Rights Reserved

UPFRONT IMPACTS FROM MANUFACTURING, TRANSPORTATION AND INSTALLATION OF CONSTRUCTION MATERIALS

A. SOURCES OF EMBODIED CARBON ACROSS THE CONSTRUCTION LIFECYCLE (EN STANDARD)

SCOPE OF STUDY Construction **Product Stage** Process Use Stage Stage "Building life cycle stages are the different periods of a building's For instance: raw material harvesting, manufacturing of products, use phase of the building, In the European markets, the building life cycle stages are defined by EN 15978 and EN 15804 standards, A1 A2 A3 A4 A5 B1 B2 **B**3 B4 which can be included in LCAs." B1-B5 A5 11115 11111 11111 1111 11111

SOURCE: ONE CLICK LCA, https://oneclicklca.zendesk.com/

1300 SYCAMORE DRIVE SE DOEE LCA GRANT DOCUMENT

lifetime.

end of life.

REDBRICK LMD 11.09.2021 REV A 5

			↓					
		E	nd-of-L	ife Stag	ge	Benel bi syste	fits and eyond t em bou	loads he ndary
Operational energy use	Operational water use	Deconstruction/demolition	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling
B6	B7	C1	C2	C3	C4	D	D	D

A. WHAT IS A "GOOD" LCA?

LCA AND LEED

LEED v4.1 lays out guidelines for how to get between 1 and 4 points for doing lifecycle assessment of the structure and enclosure.

Greater reduction in environmental impacts means more points.

For all 4 points, LCA would need to show a 20% reduction in CO2 and a 10% reduction in two other categories.

INTENT

"Updates in v4.1 include a greater" focus on reducing embodied carbon of buildings structures and enclosures. Changes to this credit are intended to incentivize reuse of existing buildings and components, as well as make building reuse calculations simpler. Further, if buildings or building elements cannot be reused significantly, changes to the lifecycle analysis option of the credit encourage projects to conduct whole builing life cycle assessment as an integral design component for many more buildings" (source: LEED V4.1 Building Design and Construction)

LEED Life-Cycle Impact Reduction – Up to 4 points

- 4 points CO2 \downarrow 20% and two other impact categories \downarrow 10%
- 3 points CO2 and two other impact categories 10%

* For this study, Path 3 should be targeted to reduce at least 3 categories by 10% for 3 points, but further analysis is required

A. PURPOSE OF THE GRANT

2

VS

6 STORIES - 10'-10", TYP. FLR-FLR HEIGHT

- 24,892 SF, TYP. FLR
- 164,531 SF (INCL. PH)
- BAU CONCRETE
- BOD CWALL / WWALL
- BOD ROOF MEMBRANE

1300 SYCAMORE DRIVE SE DOEE LCA GRANT DOCUMENT 11.09.2021 REV A 7

6 STORIES
- 10'-10", TYP. FLR-FLR HEIGHT
- 24,892 SF, TYP. FLR
- 164,531 SF (INCL. PH)
- LOW CARBON CONCRETE
- LOW CARBON CWALL / WWALL
- LOW CARBON ROOF MEMBRANE

5 STORIES - 13'-0", TYP. FLR-FLR HEIGHT - 27,545 SF, TYP. FLR - 157,760 SF (INCL. PH) CLT STRUCTURE - LOW CARBON CWALL / WWALL LOW CARBON ROOF MEMBRANE

3

A. PURPOSE OF THE GRANT & ACTIVITIES FUNDED

TARGET AUDIENCES

The target audiences for this project include the owners and project team designing and constructing the building, District non-profit real estate developers, the District government, the design and construction industry and affiliated non-profits, such as the Building Innovation Hub and DC/MD/VA Net-Zero Energy Coalition

Attachment 1: Activities Funded

Grantee: Hickok Cole Architects, Inc. Grant number: #2021-2101-USA-4 Grant Name: Building Innovation Design Assistance – Embodied Carbon Lifecycle **Analysis Assistance**

This grant funds the following grantee activities for the following property and target populations. The property is Building Number 2 on Parcel 17 at the Saint Elizabeth's campus.

A. Target Population

The target audiences for this project include the owners and project team designing and constructing the property, District non-profit real estate developers, the District government, the design and construction industry and affiliated non-profits, such as the Building Innovation Hub and DC/MD/VA Net-Zero Energy Coalition.

B. Specific Service Requirements

Activity #1 - Provide a training session

a. Prior to start of the grant work, Hickok Cole Architects, Inc. will providea training session on the "One Click LCA" software for the property's owners and design and construction team.

Activity #2 – Facilitate a working session for the property's owners and design and construction team, the outputs of which include:

- a. Provide a venue and event for open discussion with the property's structural engineer, general contractor and owners;
- b. Define the building assembly options including how, if at all, they affect the current plan layout;
- c. Create architectural background drawings and model in the Revit software;
- d. Generate a conceptual LCA using Revit inputs with generic assumptions, adding the scenarios as variables;
- e. Compare to the business as usual scenario by compiling a list of the alternate, lower carbon materials needed in each of the scenarios identified; and
- f. Package working session documentation with a materials matrix, for the purpose of pricing.

Activity #3 – Pricing exercise

- a. Generate cost comparisons between the three structural floor assembly options: and
- b. Review pricing with the design team and the client.

Activity #4 – Wrap Up Session

DOEE Grant number: #2021-2101-USA-4 Hickok Cole: Building Innovation Design Assistance - Embodied Carbon LCA Assistance

- a. The grant team will conduct a final conversation among key project team
- members prior to submission of the grant final report to DOEE; and b. The conversation will result in a list of key takeaways and next steps for use of the LCA among the project team members during the balance of their project. The grantee will include the list in the final report.

Activity #5 – Report on work performed and results

- a. Meet with DOEE staff monthly to discuss project progress; b. Submit a Work Plan by the end of the third (3rd) week after the Grantee is notified of the award. See Attachment 2 for the format:
- standardized progress-reporting template (Attachment 3) by July 15;
 - requested; ii. Comply with the tracking and reporting requirements of the DC
 - Language Access Act of 2004 by submitting the LEP/NEP Data Collection Sheet (Attachment 6)
- Attachment 4) two (2) weeks before the end of the grant period:
 - i. The following information should be included: 1. A clear listing of the activities conducted and an evaluation of
 - embodied carbon:
 - completed prior to the end of the grant period.
 - 3. Details on the activities conducted to support a case study;
 - analysis;
 - this analysis; and
 - date
 - Receive and review DOEE's comments and redraft accordingly; and ii.
 - iii. the grant period.

Activity #6 - Maintain good practices.

- a. Maintain electronic mail (email) capabilities: b. Observe proper and safe cybersecurity practices, particularly with respect to
- materials and communications to be shared with the District Government; and
- conditions and for continuing promises, certifications, assertions and assurances

Filename: 00 5296 att. 1 - activities funded hickok coleec.docx

c. Provide a Progress Report for the preceding quarter in accordance with the i. The Grantee shall attach to the Progress Report a revised Work Plan if

d. Provide DOEE a draft Final Report in Microsoft Word format. (See

their effectiveness in supporting the project's pursuit of lower

2. Documentation confirming that the activities have been

4. A basic proforma project budget, if completed as part of this

5. A copy of the energy model outputs, if completed as part of

6. Status of the development project and anticipated completion

Submit the Final Report within two (2) weeks after the expiration of

c. Periodically review Appendices to the RFA, for continuing terms and

B. EXECUTIVE SUMMARY

This grant team is committed to advance our knowledge of high performance design. In this case, we sought to quantify the embodied carbon in a current project and analyze the cost implications.

At this moment. all of us working in the buillt environment, must quickly *learn how to lessen the impact* of what we do. This grant is one important step in helping us adopt a more nuanced means of selecting the systems and materials that we put into our buildings.

As building efficiency becomes better, our focus shifts toward the amount of energy that goes into the building materials and systems. The main goal of this study is to investigate the embodied energy in the structure and envelope of a new, speculative commercial office building on Parcel 17 of the St. Elizabeths Campus.

The grant team includes: Hickok Cole, Arup, and DPR Construction

METHODOLOGY: THE ADVANTAGE OF EARLY ANALYSIS

The grant team analyzed and priced 3 alternates:

(1) design 1 reflects the embodied carbon in the cast-inplace (CIP) post-tensioned (PT) concrete structure, and the basis of design envelope systems.

(2) design 2 studies a low carbon concrete and a low carbon envelope.

(3) design 3 includes cross-laminated timber (CLT) as an alternate structure, and proposes the same low-carbon envelope as design 2.

The Hickok Cole and Arup teams input the system assemblies, material selections, and areas onto a life cycle carbon software (OneClick LCA) to analyze the embodied carbon impact of the design selections.

This software allows for analysis at a very early stage in the design process when teams need the agility to make multiple system and material comparisons for selection.

The basis of design scheme is at a 50% Schematic Design level, while the CLT scheme is at a Concept/Massing level of development.

DPR provided a cost estimate for the LCA data. The grant team sought to determine whether there is a cost premium for the lower embodied carbon materials. Cost is always a consideration and could be a determinant in the specification of materials with lower greenhouse emissions.

ARUP

The structural materials in the LCA consist of concrete, rebar, structural steel and mass timber components. The baseline structure includes concrete mixes aligned with regional National Ready Mix Concrete Association environmental product declarations and rebar with 97% recycled content, which is typical of rebar in the United States.

Alternatives designs included swapping the concrete mixes for low carbon design mixes with higher supplementary cementitious materials (SCMs) such as slag and fly ash, and a mass timber design and the low carbon concrete mixes. Mass timber inputs used Nordic, and accounted for impacts from the manufacturing facility in Quebec.

- Low carbon concrete mix designs increase the slag ٠ and fly ash quantities by 20% to reduce the amount of cement.
- Most greenhouse gas emissions from structural materials occur during the product life cycle stage (A1-A3) that includes raw material extraction, transportation to factory and manufacturing. The mass timber option does have greatly reduced product lifecycle emissions

but has significantly higher end of life (C1-C4) impacts.

Overall, the baseline structure contains 2.5 million kg CO2e. The low carbon concrete option provides an opportunity for a 17% reduction, while the mass timber option reduces further for a total of 32% as compared to the baseline.

HICKOK COLE

(b) insulated aluminum metal panels at the slab edges, as vertical design elements in the facade, and as the primary cladding for the penthouse walls;

(c) hot-fluid applied membrane roofing

Garage doors were not available in the OneClick data set and were included as additional metal panel.

As a means to test how a different material selection can change the amount of embodied carbon, an alternate selection was made for the curtain wall and window wall systems, as well as for the roofing membrane. The delta is illustrated clearly in the tabulations and graphs.

 Efforts to reduce embodied carbon should focus on material replacement with lower-embodied carbon, and potentially carbon storing materials.

- The base scheme (design 1) includes:
- (a) Kawneer window wall (aluminum-framed window system supported at each slab edge), and curtain wall (aluminum framed system that bypasses the slab edge);

A. EXECUTIVE SUMMARY CONTINUED

DPR provided a cost estimate for the LCA data. The grant team sought to determine whether there is a cost premium for the lower embodied carbon materials. Cost is always a consideration and could be a determinant in the specification of materials with lower greenhouse emissions.

OBSERVATIONS

The following are observations about using an embodied carbon calculator, specifically One Click LCA:

- This software's data set is skewed toward Europe where it was developed, but the company is working toward collecting EPD's for products used in the US.
- The ability to compare --with the click of a mouse-- the embodied carbon content between building envelope systems and elements, is an invauable tool and one which architects and engineers must leverage now.
- Design teams should strongly encourage that the manufacturers of products and systems we specify, provide embodied carbon data in this platform.

DPR CONSTRUCTION

DPR Construction provided cost and schedule analysis for the structural options on the DOEE Grant effort.

Embodying its ever forward spirit, DPR Construction has utilized mass timber on a number of projects. As with any new technology, there exists a component of "learning by doing," and mass timber is no exception. DPR has collected some valuable lessons learned from the people doing the actual work of building mass timber projects, lessons that fall into these categories: Design, Procurement and **Operational Considerations.**

MASS TIMBER VS CIP CONCRETE

In preparation of the cost analysis, DPR was provided with the structural narratives for the options prepared by ARUP. Our preconstruction team pulled quantities from the Revit

model and performed traditional 2D quantity survey to ensure that the structural components were properly quantified.

The HCA/ARUP design took into account a slightly different building configuration for the Mass Timber option vs the CIP concrete option. The CIP option was 6 levels above grade with a penthouse, and the Mass Timber option was 5 levels with a penthouse. The floor plates were slightly different, which yielded an overall GSF that was approximately the same in each option. ARUP detailed the variance in footing sizes (footings were smaller for the timber option because the structure is lighter), and this was considered in our cost analysis. We also reviewed the skin area and found that the variance between the two options was minimal. There are more floors but a shorter floor to floor height in the CIP option.

DPR also engaged several trade partners for pricing input for both the CIP structure and the Mass Timber Structure. Hardesty Concrete provided pricing for the concrete option, and Nordic Structures provided and estimate for the Mass Timber Structure. DPR reviewed and compared quantities with each of the trade partners to ensure and accurate estimate.

The result was an approximate cost premium of \$20/ GSF for the Mass Timber structure over the CIP Concrete Structure. This was based on the guantity survey and trade partner pricing that is described above.

The premium was somewhat larger than the team anticipated. This is largely due to rapid material cost escalation over the past 6 months in the timber and wood products. While pricing has stabilized, there has been significantly more cost escalation in wood products than cast in place concrete. This is reflected in the result.

We do think that with additional study of the timber configuration and working with a supplier such as Nordic, we could explore options to reduce the cost of the timber option and ultimately narrow that gap.

REDBRICK LMD 11.09.2021 REV **A** 12 1300 SYCAMORE DRIVE SE DOEE LCA GRANT DOCUMENT

E. STRUCTURAL ELEMENTS QUANTITIES FOR CONCRETE + CLT OPTIONS

When comparing the material inputs, it's key to note that low carbon concrete has the same quantities as the BAU option.

The only difference is that the mix have higher SCM quantities to offset the amount of Portland cement.

The CLT option takes advantage of the low carbon concrete for its design and that the amount of concrete and steel decrease by 50%.

Material	BAU Concrete Basis of Design	Low Carbon Concrete	Mass Ti
Concrete, CY	10k	10k	5k
Steel, lbs	1M	1M	400k
Timber, CY			6k

CY = cubic yards

BAU = business as usual

E. STRUCTURAL ELEMENTS LOW CARBON CONCRETE MIX

LOW CARBON CONCRETE

The low carbon concrete mixes used for this study have 20% higher GGBS than BAU ("business as usual") mix

Conc. Mix Strength	4000 psi	5000 psi	6000 psi	8000 psi	6000 ES
Portland Cement	380	468	496	597	645
Fly Ash	47	59	62	75	(
Slag Cement (GGBS)	177	218	231	278	161
Mixing Water	171	177	192	192	293
Coarse Aggregate	1634	1552	1602	1520	1539
Fine Aggregate	1345	1278	1318	1251	1302

ALL MEASURED IN PCY (POUNDS PER CUBIC YARD)

E. STRUCTURAL ELEMENTS **ONE CLICK LCA RESULTS**

The low carbon concrete decreases compared to BAU.

The CO2 reduction from the CLT is nearly double that.

It is important to note that sequestered carbon is not substracted from the building's embodied carbon. This is indicated by the "end of life" region.

D. ARCHITECTURAL ENVELOPE BASE SCHEME (& LOW CARBON CONCRETE), FLOOR PLANS

PENTHOUSE FLOOR

FACADE - DELINEATION OF ELEMENTS

EAST ELEVATION

GENERAL NOTES:

- 1. CW-1. WW-1 AND THE METAL PANEL WERE ALL INPUT INTO ONE CLICK LCA.
- 2. THE GROUND FLOOR WAS TREATED AS A SINGLE ELEMENT, NAMELY CW-1 AND METAL PANEL NO OVERHEAD DOOR EXISTED IN THE ONE CLICK DATA BASE.

FACADE - DELINEATION OF ELEMENTS

WEST ELEVATION

GENERAL NOTES:

- 1. CW-1. WW-1 AND THE METAL PANEL WERE ALL INPUT INTO ONE CLICK LCA.
- 2. THE GROUND FLOOR WAS TREATED AS A SINGLE ELEMENT, NAMELY CW-1 AND METAL PANEL NO OVERHEAD DOOR EXISTED IN THE ONE CLICK DATA BASE.

FACADE - DELINEATION OF ELEMENTS

NORTH ELEVATION

1300 SYCAMORE DRIVE SE
DOEE LCA GRANT DOCUMENTREDBRICK LMD
11.09.2021 REVA19

GENERAL NOTES:

- 1. CW-1. WW-1 AND THE METAL PANEL WERE ALL INPUT INTO ONE CLICK LCA.
- 2. THE GROUND FLOOR WAS TREATED AS A SINGLE ELEMENT. NAMELY CW-1 AND METAL PANEL NO OVERHEAD DOOR EXISTED IN THE ONE CLICK DATA BASE.

FACADE - DELINEATION OF ELEMENTS

SOUTH ELEVATION

GENERAL NOTES:

- 1. CW-1. WW-1 AND THE METAL PANEL WERE ALL INPUT INTO ONE CLICK LCA.
- 2. THE GROUND FLOOR WAS TREATED AS A SINGLE ELEMENT. NAMELY CW-1 AND METAL PANEL NO OVERHEAD DOOR EXISTED IN THE ONE CLICK DATA BASE.

QUANTIFYING WINDOW WALL + METAL PANEL

ENLARGED, TWO-STORY ELEVATION

ENLARGED, SECTION- PERSPECTIVE

8" PT CONCRETE SLAB

D. ARCHITECTURAL ENVELOPE BASE SCHEME

TERRACE. FROM EAST. LOOKING NW

1300 SYCAMORE DRIVE SE
DOEE LCA GRANT DOCUMENTREDBRICK LMD
11.09.2021 REVA24

D. LCA DATA + OUTPUTS TAKE OFFS FOR DATA ENTRY

AREA TAKEOFFS: DPR & HCA

DPR's area takeoffs include all facade components (metal panel, window frames, and glazing) added and summarized together for 3 general locations: (a) ground floor, (b)

The metal panel area takeoffs here are used in conjunction with DPR's *"Exterior Skin Area", to add more* fidelity to the One Click LCA input.

Building Envelope System	Skin Area (SF): PT Concrete	Skin Area: Factor	Skin Area (SF): CLT Mass Timber	
GROUND FLR - Glazing/Metal Panel	11,839	1.26	14,917	
OFFICE - Glazing	46,156	1.05	48,464	
OFFICE - Metal Panel	9,756	1.05	10,244	
PENTHOUSE - Metal Panel	7,090	1.00	7,090	
PENTHOUSE (+ all other) - Roofing	32,593	1.04	33,897	
PENTHOUSE (+ all other) - Pavers	4,593	1.04	4,777	

Matel Denel Areas			Dimensions in		Perimeter			
ivietal Panel Areas	OA Height	Dimensions	Decimals	Perimeter - LF	Metal Panel	Area - SF	Location	OneClick Specification
Ground Floor		1'3"	1.25	483		603.75	Slab Edge	Centria Vistawall
	16'-4"	15'-1"	15.08	40		603.33	Garage Doors	Centria
		1'3"	1.25	40		50.00	Slab Edge	Centria Vistawall
Level 02	10 10	9'-7"	9.58		50.5	483.96	Vertical façade panels	Centria Vistawall
	10-10	1'3"	1.25	523		653.75	Slab Edge	Centria Vistawall
Level 03	10' 10"	9'-7"	9.58		93.5	896.04	Vertical façade panels	Centria Vistawall
	10-10	1'3"	1.25	523		653.75	Slab Edge	Centria Vistawall
Level 04	10 10	9'-7"	9.58		76.3	731.21	Vertical façade panels	Centria Vistawall
	10-10	1'3"	1.25	523		653.75	Slab Edge	Centria Vistawall
Level 05	10' 10"	9'-7"	9.58		100	958.33	Vertical façade panels	Centria Vistawall
	10-10	1'3"	1.25	523		653.75	Slab Edge	Centria Vistawall
Level 06	10' 10"	10'-0"	10		71.8	718.00	Vertical façade panels	Centria Vistawall
	10-10	1'3"	1.25	523		653.75	Slab Edge	Centria Vistawall

Matal Danal Anana	Total Metal Panel			Total Vertical		
ivietal Panel Areas	Doors	Total Slab Edge	Cover	Façade Panel		
Ground Floor	603.33	653.75				
Level 02-06		3268.75		3,787.54		
Penthouse				7,090.00		
TOTAL AREAS	603.33	3922.50		10877.54		15,403.37

1300 SYCAMORE DRIVE SE
DOEE LCA GRANT DOCUMENTREDBRICK LMD
11.09.2021 REVA25

D. ARCHITECTURAL ENVELOPE ONE CLICK LCA REPORT

- **Design 1** reflects the embodied

- **Desian 2** shows the carbon "savings" if the curtain wall, window wall, and roofing membrane are replaced by similar products (YKK in lieu of Kawneer, and Sarnafil G410 in lieu of Henry/Hydrotech hot fluid

- **Desian 3** outlines an alternate design that holds the modifications made on no.2, and replaces the structure with cross laminated timber.

✓ Graphs - Life Cycle Carbon - North America (Imperial units)... All impact categories Life-cycle stages Elements Compare elements Elements and life Life Cycle Carbon - North America (Impe 2 - SE P-17 B-2 (base) 9 2 - v1_base w/ rev CW-1 125 % Global warming Global warming 2 - 5E P-17 B-2 (base): 3559923.93 kg CO2e / 100% 2 - v1_base w/ rev CW-1 / WW-1: 1395466.94 kg CO2e / 39. 100 % - v2_CLT rev CW/WW rev rf memb: 992474.92 kg CO2e / 2 75 % 50 % 25 % 0 % Global warming Chart 2 - SE P-17 B-2 (base) Category 2 - v1 base w/ rev CW-1 / WW-Global warming 100 Bio-CO2 storage

Life Cycle Carbon - North America (Imperial units)

2 - v1_base w/ rev CW-1 / WW-1

2 - v2 CI T rev CW/WW rev rf memb

Screenshots, OneClick LCA Report

	compare diamonta	Lienterne und me byele i	An Brahus		
Cycle Ca	rbon - North A	merica (Imperia	units) - All impact	categories	Ð
2 - SE P	-17 B-2 (base) 🥚 2 - 1	v1_base w/ rev CW-1 / WW-	1 • 2 - v2_CLT rev CW/WW	ev rf memb	=
bal warming Glo SE P-17 B-2 (ba: v1_base w/ rev (v2_CLT rev CW/	bal warming se): 3559923.93 kg CO CW-1 / WW-1: 1395464 WW rev rf memb: 99243	02e / 100% 5.94 kg CO2e / 39.2% 74.92 kg CO2e / 27.88%			
Clobal warr				Rio CO2 storage	
Giobai warn	ing	Chart		bio-CO2 Storage	
B-2 (base)	2 - v1_base	e w/ rev CW-1 / WW-1	2 - v2_0	LT rev CW/WW rev	rf memb
	100		39.19934724854585		27.8791048135108
rbon - Nort	h America (Imp	oerial units) - Glo	obal warming, kg C	O₂e - Life-c ater • C3-C4 W	ycle stages o
rbon - Nort	h America (Imp	oerial units) - Glo air 🥚 84-85 Replaceme	obal warming, kg C	O₂e - Life-c ater • C3-C4 W	ycle stages ● /aste processing ● B1 Use Phase ≡
rbon - Nort	h America (Imp onstruction • B3 Rep g CO2e	perial units) - Gle	Dbal warming, kg C	O2e - Life-c ater ● C3-C4 W	vcle stages
rbon - Nort etation A5 Co e) s: 3 415 484.90k	h America (Imp onstruction • B3 Rep g CO2e	oerial units) - Glo air 🧧 B4-B5 Replaceme	obal warming, kg C	O₂e - Life-c ater ● C3-C4 W	ycle stages ● ^{faste processing} ● B1 Use Phase ≡
rbon - Nort witation A5 Cr e) is: 3 415 484.90k	h America (Imp onstruction • B3 Rep g CO2e	oerial units) - Glo bair 🧶 B4-B5 Replaceme	Dbal warming, kg C	O₂e - Life-c ater ● C3-C4 W	ycle stages ● /aste processing ● B1 Use Phase Ξ
rbon - Nort	h America (Imp onstruction • B3 Rep g CO2e	oerial units) - Glo eair – B4-B5 Replaceme	Dbal warming, kg C	O2e - Life-c	ycle stages ● /aste processing ● B1 Use Phase Ξ
rbon - Norti etation • A5 Cr e) 5: 3 415 484.90k	h America (Imp onstruction • B3 Rep g CO2e	Derial units) - Glo Dair 🥚 B4-B5 Replaceme	Dbal warming, kg C	O2e - Life-c	ycle stages
rbon - Norti station • A5 Cc e) 5: 3 415 484.90k	h America (Imp onstruction • B3 Rep g CO2e	oerial units) - Glo	Dbal warming, kg C	O2e - Life-c: ater ● C3-C4 W	ycle stages ● /aste processing ● B1 Use Phase Ξ
rbon - Norti artation • A5 Cr e) e: 3 415 484.90k	h America (Imp onstruction • B3 Rep g CO2e	Derial units) - Glo bair B4-B5 Replacement 2 - v1_base w/ rev CW-1 / 1 A1-A3 Materials - 1 / 1	W-1	O2e - Life-c	ycle stages ● /aste processing ● B1 Use Phase Ξ
rbon - Norti artation ● A5 Cr e) s: 3 415 484.90k	h America (Imp onstruction • B3 Rep g CO2e	Derial units) - Globari B4-B5 Replacement B4-B5 Replacement 2 - v1_base w/ rev CW-1 / 1 A1-A3 Materials: 1 3	WK-1 57 055.37kg CO2e	02e - Life-cr ator C3-C4 W	ycle stages •
rbon - Norti etation • A5 Cc e) 5: 3 415 484.90k	h America (Imp onstruction • B3 Rep g CO2e	2 - v1_base w/ rev CW-1 / 1 All -A3 Materials: 1 3	bbal warming, kg C Int B6 Energy B7 W WY-1 57 055.37kg CO2e	O2e - Life-c ater ● C3-C4 W 2 - V2_CLT rr ● A1-A3 M	v CW/WW rev rf memb aterials: 973 477.19kg CO2e
rbon - Norti	h America (Imp onstruction • B3 Rep g CO2e	2 - v1_base w/ rev CW-1 / V A1-A3 Materials: 1 3	w-1 57 055.37kg CO2e	O2e - Life-cy ator C3-C4 W C3-C4 W	vcW/WW rev rf memb laterials: 973 477.19kg CO2e
rbon - Norti station A 5 Cc e) 5: 3 415 484.90k	h America (Imp onstruction • B3 Rep g CO2e	2 - v1_base w/ rev CW-1 / 1 • A1-A3 Materials: 1 3	WW-1 57 055.37kg CO2e	O2e - Life-c ator ● C3-C4 W 2 - v2,CLT r ● A1-A3 M	vCW/WW rev rf memb laterials: 973 477.19kg CO2e
rbon - Nort	h America (Imp onstruction • B3 Rep g CO2e	2 - v1_base w/ rev CW-1 / 1 • A1-A3 Materials: 1 3	WW-1 57 055.37kg CO2e	O2e - Life-c: ater ● C3-C4 W 2 - v2_CLT rr ● A1-A3 M	v CW/WW rev rf memb aterials: 973 477.19kg CO2e
rbon - Norti rtation A 5 Ca 3) 5: 3 415 484.90k	h America (Imp onstruction • B3 Rep g CO2e	2 - v1_base w/ rev CW-1 / 1 • A1 - A3 Materials: 1 3 2 - v1_base w/ rev CW-1 / 1	warming, kg C wrt B6 Energy B7 W ww-1 57 055.37kg CO2e	O2e - Life-c: ater ● C3-C4 W 2 - v2_CLT re ● A1-A3 M	v CW/WW rev rf memb aterials: 973 477.19kg CO2e
rbon - Norti rtation A 5 Ca 3: 3 415 484.90k	h America (Imp onstruction • B3 Rep g CO2e	2 - v1_base w/ rev CW-1 / 1 A1 - A3 Materials: 1 3 2 - v1_base w/ rev CW-1 / 1 A1 - A3 Materials: 1 3 2 - v1_base w/ rev Chart	ww-1 57 055.37kg CO2e CW-1 / WW-1	O2e - Life-c: ator ● C3-C4 W 2 - v2_CLT re ● A1-A3 M	v CW/WW rev rf memb aterials: 973 477.19kg CO2e
Indian As Columbia ortation As Columbia (e) Is 3 415 484.90k (f) S 415 484.90k P-17 B-2 (base) Naterials V3 Materials State	A Transportation	2 - v1_base w/ rev CW-1 / 1 A1 - A3 Materials: 1 3 2 - v1_base w/ rev CW-1 / 1 A1 - A3 Materials: 1 3 2 - v1_base w/ rev Chart A5 Construction B31	WW-1 57 055.37kg CO2e	O2e - Life-c: ater ● C3-C4 W 2 - v2_CLT re ● A1-A3 M 2 - v2_L 2 - v2_L 3 Energy (87 Water	v CW/WW rev rf memb aterials: 973 477.19kg CO2e
P-17 B-2 (base) A3 Materials 15443-902	A Transportation 9107.608575910563 5202.835417132544	2 - v1_base w/ rev CW-1 / 1 A1 - A3 Materials: 1 3 2 - v1_base w/ rev CW-1 / 1 A1 - A3 Materials: 1 3 2 - v1_base w/ rev Chart A5 Construction B3 30091.291956844525 24668.210971741202	ww-1 B6 Energy B7 W 57 055.37kg CO2e	O2e - Life-c: ater ● C3-C4 W 2 - v2_CLT re ● A1-A3 M 2 - v2_1 3 Energy B7 Water 0 0 0	v CW/WW rev rf memb aterials: 973 477.19kg CO2e

D. ARCHITECTURAL ENVELOPE ONE CLICK LCA REPORT, CONTINUED

- **Design 1** reflects the embodied

- **Design 2** shows the carbon "savings" if the curtain wall, window wall, and roofing membrane are replaced by similar products (YKK in lieu of Kawneer, and Sarnafil G410 applied membrane).

- **Design 3** outlines an alternate design that holds the modifications made on no.2, and replaces the structure with cross laminated timber.

Chart 21-02 10 10 10 01. Floor Structural Frame - Beam 21-02 20 20. Exterior Windows Category 2 - SE P-17 B-2 (base) 444086.18570650485 3115837.746292203 2 - v1_base w/ rev CW-1 / WW-1 350482.01091134606 1044984.9329769152 2 - v2_CLT rev CW/WW rev rf memb 364510 42261081433 627964 5016723629

Life Cycle Carbon - North America (Imperial units) - Global warming, kg CO2e - Compare elements o

	Ch	art
Category	2 - SE P-17 B-2 (base)	1
21-02 10 10 10 01. Floor Structural Frame - Beam	444086.1857065048	5
21-02 20 20. Exterior Windows	3115837.74629220	3

D. ARCHITECTURAL ENVELOPE **REPORT, CONTINUED**

- **Design 1** reflects the embodied

- **Design 2** shows the carbon "savings" if the curtain wall, window wall, and roofing membrane are replaced by similar products (YKK in lieu of Kawneer, and Sarnafil G410 applied membrane).

- **Design 3** outlines an alternate design that holds the modifications structure with cross laminated timber. Life Cycle Carbon - North America (Imperial units) - Global warming, kg CO2e - Elements and life-cycle stages o

		Chart			
Category	A1-A3 Materials	A4 Transportation	A5 Construction	B4-B5 Replacement	C3-C4 Waste processing
- SE P-17 B-2 (base)	3415484.9038601764	9107.608575910563	30091.291956844525	53750.28395902228	51489.843646754314
- v1_base w/ rev CW-1 / WW-1	1357055.3667435013	5202.5354171325935	26468.210971741202	0	6740.830755886063
- v2_CLT rev CW/WW rev rf memb	973477.1873081981	3801.4367214481103	10412.928052506073	0	4783.372201024854

E. ENVELOPE **ONE CLICK LCA RESULTS**

CO2e SAVINGS

Design 2: reflects a 60% CO2e savings when compared to the Basis of Design (Design 1).

The alternates include revisions roofing membrane

Design 3: reflects a 71% CO2e savings. The difference between 2 and 3 is the generic change in structure (CIP concrete for CLT) that is quantified with more fidelity in the

973477.1873081981

3801.4367214481103

1300 SYCAMORE DRIVE SE REDBRICK LMD DOEE LCA GRANT DOCUMENT

11.09.2021 REV A 29

2 - v2 CLT rev CW/WW rev rf memb

	=	
C	:02e	
C	:02e	
	02e	
C neml	b 89.843646754314	
C 	02e 99.843646754314 10.830755886063	

D. CWALL / WWALL COMPARISON ONE CLICK LCA DATA FOR BOTH MANUFACTURERS

REPORTING - LACK OF UNIFORMITY

Because of the lack of uniformity in how manufacturers declare data for their products, it seems at a glance that a substitution of the "basis of design" Kawneer systems for YKK results in significant embodied carbon

At a closer look however, we see that YKK's data is an average that ecompasses different systems and window wall). We also see in the more detailed EPD, that because the typical "lite" is not clearly defined, it is difficult to ascertain the "frequency" and quantity of mullions and therefore the amount of aluminum in the facade.

Ideally the One Click LCA software would allow users to control the average width of the "lites" to account for the project specific frequency and quantity of vertical and horizontal

"density" and "thickness" in the EPD of

Another difference is that, for the purposes of the EPD, Kawneer includes a default float glass IGU, while YKK values are for the "frame only" and require the addition of glass

		KAWNEE	ER
Traditio	onal curtain wall, 1.5m x 1.6m, 35.6 kg/piece,	-	
1600 1,	1600 2, 1600 3, 1600 4, 1600 5, 1600 SS,	10	(ha
1600 U	T 1, 1600 UT 2, 1620/1620 SSG, 1630 SS IR,		
2250 IG	i, 2250 LR, 7500 and Clearwall Curtain Wall		
System	is (Kawneer) 😭 🗋	100	
Add to I	Input Add to compare Download EPD		
	Show empty rows	*	Ger
General information		Co	untry
Country	North America	Ma	nuta
Manufacturer	Kawneer		
Commercial name	1600 1, 1600 2, 1600 3, 1600 4, 1600 5, 1600 SS, 1600 UT 1, 1600 UT 2, 1620/1620 SSG, 1630 SS IR, 2250 IG, 2250 LR, 7500 and Clearwall Curtain Wall Systems	Co	mme
Material type	Alumium frame windows	Wa	mine
Warning	Datapoint may be expired	Wa	minş
. Datapoint back	ad information	~	Dat
 Datapoint backgroui 	nu monnation	EP	D nu
EPD number	47868332121.105.1	EP	D pro
EPD program	UL Environment	Yes	ar
Year	2015	Pro	duct
Product Category Rules (PCR)	PCR Cradle to Gate Window, September 2015	(PC Sta	R)
Standard	ISO14040	Dat	ta sol
Data source	Traditional curtain wall system, Kawneer 2015	Ver	lificat
Verification	Third-party verified (as per ISO 14025)	ver	mea
Upstream database	GaBI	Up	strea
 Technical characteri 	stics	*	Tec
Technical specification	1.5m x 1.6m, 35.6 kg/piece	Tec	chnic
Density	133.33 kg/m ³	Der	nsity
Default thickness	267.0 mm	Det	fault
Available units		Av	allabl
Environmental profi	ASSUMED SIZE:		Env
	QUANTITY OF HORIZONTAL AND	•	
potential (A1-A3) before	1324.0 kg CO ₂ e / kg GENERIC FLOAT GLASS IGU TO	Glo	tentia
local compensation	353.51 kg CO2e / m ²	loc	al co
Impact categories (A1- A3)	Show	Imp A3	pact (
Performance In group	Alumium frame windows	Per	rtorm
	CO2 TRACI: 25 / 31 🥸 See full ranking		
Performance ranking	 Datapoint impacts are unusual) however data matches its issue document. Avoid datapoint when seeking typical product. 	Per	rtorm
O Metadata	+/- 28.35 % variation in dataset		Metar
 Default scenarios ar 	nd assumptions O		
Transportation distance	a 430	v	Def
Transportation method	Trailer combination, 40 ton capacity, 100% fill rate:	Tra	inspo
Default service life	As building	Tra	inspo
Desident est mole line		Det	fault
Product-specific service	As building	Pro	duct
✓ Others		life	0.
Notes about PCR	Biogenic CO ₂ separated	v	oth
Desmanting	Third-party varified (se per ISO 14025)	No	tes al

ER			
Windo 40.5 k TR-70 (Kawn	g/p 0 V ee	wall curtain wall system, 1.5m x 1.3m, blece, MetroView FG 501T, FG 623, Window Walls and PG123 Framing r) ☆ ① ut. Add to compare Download EPD	× *
Addito		Charles to compare Download EPD	
General information		Show empty rows	1
ountry		North America	
anufacturer		Kawneer	1
		MetroView FG 501T. FG 623, TB-700 Window	1
ommercial name		Walls and PG123 Framing	I
ateriai type		Alumium trame windows	1
arning		C Datapoint may be expired	1
Datapoint backgrou	und	d information	1
PD number		47868332121.110.1	1
PD program		UL Environment	
ear		2015	1
roduct Category Rules PCR)		PCR Cradle to Gate Window, September 2015	I
tandard		ISO14040	1
ata source		Window wall, Kawneer 2015	
erification	0	Third-party verified (as per ISO 14025)	
pstream database		GaBi	
Technical characte	rist	tics	
echnical specification		1.5m x 1.3m, 40.5 kg/piece	1
ensity		318.9 kg/m	
efault thickness	0	127.0 mm	
vallable units		kg, ton, m ³ , m ²	
Environmental prot	file	ASSUMED SIZE:	
lobal warming otential (A1-A3) before cal compensation		11.3 kg CO2e / kg QUANTITY OF HORIZONTAL AND 11.3 kg CO2e / kg VERTICAL MULLIONS. INCLUDES 3603.54 kg CO2e / m² QUANTIFY THE ENTIRE ASSEMBL 457.65 kg CO2e / m² QUANTIFY THE ENTIRE ASSEMBL) Y
npact categories (A1- 3)		Show	
erformance in group		Alumlum frame windows	
		CO2 TRACI: 31 / 31 🚳 See full ranking	
erformance ranking	•	Oatapoint Impacts are unusual, however data matches its issue document. Avoid datapoint when seeking typical product.	
Metadata	0	+/- 28.35 % variation in dataset	
Default scenarios a	nd	assumptions O	
ransportation distance	0	430	
ransportation method	0	Trailer combination, 40 ton capacity, 100% fill rate: 0.0559 kg CO_2e / tonmile	
efault service life	0	As building	
roduct-specific service	0	As building	
Others			
otes about PCR		Only with ISO14040	

		YI
Winda Kg/m2 YWW YWW Add 1	45 45 0 In	wall curtain v CN 40, YCN 4 T, YWW 45 Fl TU Window V Add to col
✓ General information	n	
Country		United States
Manufacturer		YKK AP
Commercial name		YCN 40, YCN 40 T, YWW 45 FI, YW TU Window Wall
Material type		Alumlum frame v
Warning		🕒 Datapoint ma
· Datapoint backgro	und	information
EPD number		4786832322.106.
EPD program		UL Environment
Year		2015
Product Category Rules (PCR)		IBU/UL PCR Part and Requirement 06.19.2014), Part Curtain Walling (Addendum: IBU V1.0 Nov. 2015).
Standard		ISO14040
Data source		Aluminum Windo America 2015
Verification	0	Third-party verifi
Upstream database		GaBI
 Technical character 	eris	tics
Technical specification		5.9 kg/m²
Density		52.68 kg/m ³
Mass per up!t	~	5.9 kg/m ²
muse per unit	0	v.e ngriif"
The state of the s	0	1120 mm
Default thickness		····
Available units		m², kg, ton, m ³
Available units	file	m², kg, ton, m ³
Available units Environmental pro Global warming potential (A1-A3)	file	m ² , kg, ton, m ³ 11.59 kg CO ₂ e / k 610.71 kg CO ₂ e / 68.4 kg CO ₂ e / m ²
Available units	file	m ² , kg, ton, m ³ 11.59 kg CO ₂ e / k 610.71 kg CO ₂ e / m ² 88.4 kg CO ₂ e / m ² Show
Available units Christen mechanism Christen and the second second Available units Christen and the second Christen and the second second Christen and the second second second Christen and the second second second second second Christen and the second se	file	11.59 kg CO ₂ e / k 610.71 kg CO ₂ e / k 68.4 kg CO ₂ e / m ² Show
Available units Clobal warming potential (A1-A3) Impact categories (A1- A3) Performance in group Performance ranking	file	11.59 kg CO ₂ e / k 610.71 kg CO ₂ e / k 630.71 kg CO ₂ e / m 68.4 kg CO ₂ e / m Show Alumlum frame v CO ₂ TRACI: 1/3
Available units Calculation mechanism Available units Environmental pro Global warming potential (A1-A3) Impact categories (A1- A3) Performance in group Performance ranking O Metadata	file	11.59 kg CO ₂ e / k 610.71 kg CO ₂ e / k 630.71 kg CO ₂ e / k 640.71 kg CO ₂ e / m Show Alumium frame ta CO ₂ TRACI: 1 / 3 +/- 28.35 % variat
Available units Characteristic for the second seco	e e and	11.59 kg CO ₂ e /k 11.59 kg CO ₂ e /k 60.71 kg CO ₂ e /k 68.4 kg CO ₂ e /m Show Alumlum frame v CO ₂ TRACI: 1 / 3 +/- 28.35 % varial assumptions (
Available units Environmental pro Global warming potential (A1-A3) Impact categories (A1- A3) Performance In group Performance ranking O Metadata Default scenarios : Transportation distance	file O and O	m ² , kg, ton, m ³ 11.59 kg CO ₂ e / k 610.71 kg CO ₂ e / m Show Alumlum frame v CO ₂ TRACI: 1/3 +/- 28.35 % varial assumptions (430
Available units Available units Environmental pro Global warming potential (A1-A3) Impact categories (A1- A3) Performance in group Performance ranking O Metadata Default scenarios i Transportation distance Transportation method	e file	11.59 kg CO ₂ e / k 11.59 kg CO ₂ e / k 11.59 kg CO ₂ e / k 68.4 kg CO ₂ e / m Show Alumlum frame k CO ₂ TRACI: 1 / 3 +/- 28.35 % varial assumptions (430 Trailer combinat 0.0559 kg CO ₂ e /
Available units Available units Environmental pro Global warming potential (A1-A3) Impact categories (A1- A3) Performance In group Performance ranking O Metadata Default scenarios i Transportation distance Transportation method Default service life	file o o o o	m², kg, ton, m² 11.59 kg CO ₂ e / k 11.59 kg CO ₂ e / m 68.4 kg CO ₂ e / m Show Alumlum frame tr CO ₂ TRACI: 1/3 +/- 28.35 % variat assumptions 4 Trailer combinati 0.0558 kg CO ₂ e / A As building

1300 SYCAMORE DRIVE SE DOEE LCA GRANT DOCUMENT

REDBRICK LMD 11.09.2021 REV A 30

	AVERAGE OF DIFFERENT SYSTEMS:
KK	PUNCHED WINDOW, RIBBON WINDOW, AND WINDOW WALL SYSTEMS
wall aluminum framing, 5.9 40 T, YWE 60 T, YWW 05 T, and Wall System (YKK AP) ☆ Ompare Download EPD Show empty rows	
D T, YWE 60 T, YWW 40 T, YWW 45 WW 45 FS, YWW 5 T, and YWW 45 Il System	
ay be expired	
M	
t	
rt A: Calculation Rules for the LCA nts Project Report, (V1.3, rt B: Requirements on the EPD for (BU, V1.6, Jul. 2014), Part B I PCR for Curtain Walling (UL E, Berlin: Institut Bauen & Umwelt.	
low Wall Systems, YKK AP	
fied (as per ISO 14025)	SIZE? ASSUMPTION FOR SIZE AND/OR QUANTITY OF HORIZONTAL AND VERTICAL MULLIONS IS NOT OL LEAR. DOES NOT INCLUDE GENERIC ISU TO QUANTIFY THE ENTIRE ASSEMBLY "DENSITY" VALUE IS ABOUT VS OF THE KAWNEER WINDOW WALL DENSITY
	"DEFAULT THICKNESS" IS ABOUT 12% LESS THAN THE
kg / m ³ n ²	KAWNEER WWALL THICKNESS
windows	
31 🕮 See full ranking	
ation in dataset	
0	
tion, 40 ton capacity, 100% fill rate: / tonmile	

ENVIRONMENTAL PRODUCT DECLARATION WINDOW WALL

ALUMINUM CURTAIN WALL SYSTEMS

Window Wall offers the look of a true curtain wall with a slab-to-slab aluminum frame design with a slab edge cover option to conceal the floor slab. Kawneer products are comprised of extrusions made from one of the earth's most plentiful recyclables aluminum. Durable and lasting the extruded products also boast aesthetically appealing design features that can help contribute to energy efficiency and long term sustainability.

Kawneer Company, Inc., part of Alcoa's global Building and Construction Systems (BCS) business, has provided the commercial construction industry with best-in-class architectural a luminum products and service for more than 100 years. Its extensive range of solutions - from curtain walls and windows, to entrances and framing systemshelp build infinite possibilities for thermal performance, hurricane resistance, blast mitigation and sun control

Kawneer's commitment to social and environmental responsibility is rooted in high performing, sustainable solutions that extend beyond energy efficiency to elements like daylighting, a coustical efficiency, recyclability, occupant security and occupant comfort. In fact, sustainability is at the heart of Kawneer's product line, which is comprised of one of the earth's most plentiful recyclables - a luminum.

Kawneer offers architects a new way to look at the building façade, placing endless design and sustainability options at their fingertips.

> For more information visit www.kawneer.com

ENVIRONMENTAL PRODUCT DECLARATION

Window Wall Featuring MetroView[™] FG 501T Window Wall

This declaration is an environmental product declaration (EPD) in accordance with ISO 14025. EPDs rely on Life Cycle Assessment (LCA) to provide information on a number of environmental impacts of products over their life cycle. Exclusions: EPDs do not indicate that any environmental or social performance benchmarks are met, and there may be impacts that they do not encompass. LCAs do not typically address the site-specific environmental impacts of raw material extraction, nor are they meant to assess human health toxicity. EPDs can complement but cannot replace tools and certifications that are designed to address these impacts and/or set performance thresholds - e.g. Type 1 certifications, health assessments and declarations, environmental impact assessments, etc. Accuracy of Results: EPDs regularly rely on estimations of impacts, and the level of accuracy in estimation of effect differs for any particular product line and reported impact. Comparability: EPDs are not comparative assertions and are either not comparable or have limited comparability when they cover different life cycle stages, are based on different product category rules or are missing relevant environmental impacts. EPDs from different programs may not be comparable.

PROGRAM OPERATOR	UL Environment		
DECLARATION HOLDER	Kawneer North America		
DECLARATION NUMBER	47868332121.110.1 Window Wall featuring FG 501T Win Earthsure. Cradle to Gate Window F December 7, 2015		
DECLARED PRODUCT			
REFERENCE PCR			
DATE OF ISSUE			
PERIOD OF VALIDITY	5 Years		
	Product definition and information a		
	Information about basic material and		
	Description of the product's manufact		
CONTENTS OF THE	Indication of product processing		
DECLARATION	Information about the in-use condition		
	Life cycle assessment results		
	Testing results and verifications		

The PCR review was conducted by:

14025 by Underv	writers Laboratorie	s	
	RNAL	\boxtimes	EXTERNAL

Environment

1300 SYCAMORE DRIVE SE DOEE LCA GRANT DOCUMENT

Page 2 of 7

According to ISO 14025

dow Wall
roduct Category Rule. September 2015
out building physics
the material's origin
ure
ns
PCR Review Panel
Chair: Thomas P. Gloria
Industrial Ecology Consultants
il
Wade Stout, UL Environment
Homes Storie
Thomas Gloria Industrial Ecology Consultants

ENVIRONMENTAL PRODUCT DECLARATION

Page 3 of 7

Window Wall Featuring MetroView[™] FG 501T Window Wall According to ISO 14025

Product Information

Product Description

Window wall applications have been growing in popularity for many years. They were predominantly specified on large condominium projects, but have begun to be used in medium size projects and are becoming the preferred method for commercial projects where the aluminum framing design is from slab to slab.

Window Wall featuring:

MetroView™ FG 501T Window Wall, FG 623 Window Wall, TR-700 - Window Wall and PG 123™ Framing

Sleek, efficient and versatile Window Wall provides the desired aesthetics of a curtain wall into a cost-efficient window wall system. Ideal for mid-rise commercial projects and sophisticated multi-family housing, Window Wall delivers the refined design features that are so popular in today's urban and near-urban cityscapes.

For thermal performance, a product is considered thermally broken if the separation between the interior and exterior metal is 0.21 inches or greater. Thermally improved systems are generally defined as having a separation between the interior and exterior metal of less than 0.21 inches but not less than 1/16 inch.

MetroView[™] FG 501T Window Wall

Performance Standards

Kawneer products are tested, certified and labeled for the following performance standards:

- AAMA/WDMA/CSA 101/IS2/A440 (NAFS-North American Fenestration Standard/Specification for windows, doors, and skylights) for the most current version
- AAMA E283/NFRC 400 Air Infiltration
- ASTME330/1 and AAMA 501 Methods of Test
- AAMA 1503, AAMA 507 and NFRC 100 Thermal Transmittance U-Factors
- AAMA 1503, CSA A440.2 and NFRC 500 Condensation Resistance (CRF.I.CR)
- AAMA 507 and NFRC 200 Overall Solar Heat Gain Coefficient and Visible Transmittance (SHGC) & (VT)
- AAMA 1801, ASTM E90 and ASTM E1425 Sound Transmission (STC, OITC)

Life Cycle Assessment

Declared Unit

The declared unit of the underlying life cycle assessment study was one square meter (1 m²) of window (including frame) meeting the performance standards noted below. The reference flow is 40.5 kg of window unit with framing, with a frame to glazing ration of 31.4% to 68.6% by mass. The 1.5m x 1.3m ribbon window standard size was used to derive the declared unit.

Environment

ENVIRONMENTAL PRODUCT DECLARATION

Window Wall Featuring MetroView[™] FG 501T Window Wall

System Boundary

The system boundary for the declaration is cradle-to-gate per the guiding PCR. The product life cycle stages included within this boundary are illustrated in Figure 1.

Legend:	Primary data	Secondary & Tertiary data	Not Mode

Figure 1: Life cycle stage diagram for cradle-to-gate production of traditional curtain wall by Kawneer

Data Sources

To cover these requirements and to ensure reliable results, first-hand industry data were used in combination with consistent background LCA information from the GaBi ts 2014 database. The data for aluminum billet, as well as externally sourced aluminum extrusions, are based on 2010 Aluminum Association studies and are the best available. Other LCI datasets were sourced from the GaBi LCA databases and are representative of years 2010-2013.

Assumptions

The manufacturing process and end product is essentially the same in all manufacturing sites. Impacts and inventories for traditional curtain wall are calculated with a mass-based production-weighted average of each manufacturer's impacts and inventories.

Glass is only processed at the Cranberry facility. The remaining facilities produce and sell only the aluminum frames. For these facilities, the glass produced at the Cranberry facility was used as a proxy for the window glazing.

Environment

1300 SYCAMORE DRIVE SE DOEE LCA GRANT DOCUMENT

Page 4 of 7

According to ISO 14025

Float glass is insulated, laminated, or tempered and added to the finished assembly. At this time data does not include granularity to differentiate between insulate, laminated and tempered glass. As such, all glass is treated the same.

ENVIRONMENTAL PRODUCT DECLARATION

Page 5 of 7

Window Wall Featuring MetroView[™] FG 501T Window Wall

According to ISO 14025

No significant assumptions have been made beyond the aforementioned. All of the raw materials and energy inputs have been modeled using processes and flows that closely follow actual production raw materials and processes. All of the material and energy flows have been accounted.

Sensitivity Analysis

Sensitivity analyses was performed because primary data from more than one location is averaged for a unit process.

In order to better understand the variation of impacts across locations for the manufacturing process, the coefficient of variation was calculated for the environmental impact categories. As shown in Table 1, the impacts were seen to vary between 1% and 3%, depending on location for the production of window wall. These variations are likely due primarily to the different scales of operations at each location, the different proportions of finishes used, as well as due to energy mixes used at each location.

	v wa
--	------

Impact Category	CoV
TRACI 2.1	
Global warming potential	1%
Ozone depletion potential	1%
Acidification potential	3%
Eutrophication potential	1%
Smog formation potential	1%

The coefficient of variation for each impact category was calculated by first determining the weighted standard deviation (σ_w) and the weighted average (\bar{x}_w) and then applying

CoV =

The weighted average was calculated via

Environment

$$\bar{x}_w = \frac{\sum_{i=1}^n w_i x_i}{\sum_{i=1}^n w_i},$$

while the weighted standard deviation is determined by

$$\sigma_w = \sqrt{\frac{\sum_{i=1}^n w_i (x_i - \bar{x}_w)^2}{\sum_{i=1}^n w_i}},$$

where w_i is the weight, i.e. annual production, for each company and x_i is the particular input or output for each location.

Window Wall Featuring MetroView[™] FG 501T Window Wall

Life Cycle Impact Assessment Results

Table 1: Cradle-to-gate (manufacturing, glazing and frame) LCIA results of Kawneer Window Wall

	Units (per 1m²)	Manufacturing Impact (cradle to gate)	Glazing Impact (cradle to gate)	Frame Impact (cradle to gate)
	Life Cycle Impa	ct Assessment Results	(TRACI 2.1)	
Global Climate Change Potential (excluding biogenic carbon)	kg CO ₂ equivalent	2.30E+02	1.80E+02	4.95E+01
Acidification Potential	kg SO ₂ equivalents	1.25E+00	8.69E-01	3.84E-01
Eutrophication Potential	kg N equivalents	3.32E-02	2.23E-02	1.09E-02
Stratospheric Ozone Depletion Potential	kg CFC-11 equivalents	9.92E-08	8.98E-08	9.44E-09
Photochemical Smog Formation Potential	kg O₃ equivalents	1.11E+01	7.97E+00	3.09E+00
	Use of Ma	terial and Energy Reso	urces	
Fresh Water Consumption (excluding 143 L rain water)	Liters	3.14E+03	2.90E+03	2.46E+02
Non-Renewable Primary Energy Demand	MJ (HHV)	2.89E+03	2.22E+03	6.70E+02
Renewable Primary Energy Demand	MJ (HHV)	7.61E+02	6.72E+02	8.91E+01
Non-Renewable Material Resources*	kg	6.95E+02	6.02E+02	9.31E+01
Renewable Material Resources*	kg	8.61E+05	7.10E+05	1.51E+05
		Waste Production		
Non-hazardous Waste Generated	kg	4.55E+01	4.07E+01	4.81E+00
Hererdeus Weste Consected	ka	1.11E-02	1.09E-02	1.36E-04

	Units (per 1m²)	Manufacturing Impact (cradle to gate)	Glazing Impact (cradle to gate)	Frame Impact (cradle to gate)
	Life Cycle Impac	ct Assessment Results	(TRACI 2.1)	
Global Climate Change Potential (excluding biogenic carbon)	kg CO₂ equivalent	2.30E+02	1.80E+02	4.95E+01
Acidification Potential	kg SO ₂ equivalents	1.25E+00	8.69E-01	3.84E-01
Eutrophication Potential	kg N equivalents	3.32E-02	2.23E-02	1.09E-02
Stratospheric Ozone Depletion Potential	kg CFC-11 equivalents	9.92E-08	8.98E-08	9.44E-09
Photochemical Smog Formation Potential	kg O ₃ equivalents	1.11E+01	7.97E+00	3.09E+00
	Use of Ma	terial and Energy Reso	urces	
Fresh Water Consumption (excluding 143 L rain water)	Liters	3.14E+03	2.90E+03	2.46E+02
Non-Renewable Primary Energy Demand	MJ (HHV)	2.89E+03	2.22E+03	6.70E+02
Renewable Primary Energy Demand	MJ (HHV)	7.61E+02	6.72E+02	8.91E+01
Non-Renewable Material Resources*	kg	6.95E+02	6.02E+02	9.31E+01
Renewable Material Resources*	kg	8.61E+05	7.10E+05	1.51E+05
		Waste Production		
Non-hazardous Waste Generated	kg	4.55E+01	4.07E+01	4.81E+00
Hazardous Waste Generated	kg	1.11E-02	1.09E-02	1.36E-04

Environment

1300 SYCAMORE DRIVE SE DOEE LCA GRANT DOCUMENT

REDBRICK LMD 11.09.2021 REV A 33

DPR ARUP hickok cole

According to ISO 14025

Page 6 of 7

ENVIRONMENTAL PRODUCT DECLARATION

Page 7 of 7

Window Wall Featuring MetroView[™] FG 501T Window Wall

According to ISO 14025

Additional Information

Disclosure of Windows Hazardous Content

There are no materials present in at least 0.1% of the window wall that are known to be hazardous to human health and the environment nor on the Candidate List Substances of Very High Concern [IERE 2015].

Recyclable Content

Aluminum is a highly efficient sustainable building material. Aluminum is 100% recycleable and can be recycled repeatedly. Recycled aluminum is identical to smelted aluminum but requires only 1/20 of the energy to manufacture. In building and construction aluminum scrap has a recycling rate of 95% [AA]. The remaining 5% is sent to landfill.

References

AA. 2013	Aluminum Association. "The Environmental Footprint of Semi-finished Aluminum Products in North America: A Life Cycle Assessment Report." 2013
Bare, J. 2012	Tool for the Reduction and Assessment of Chemical and other Environmental Impacts (TRACI) - Software Name and Version Number: TRACI version 2.1 - User's Manual. Washington, D.C.: U.S. EPA.
Earthsure 2015	Earthsure. "Cradle to Gate Window Product Category Rule. September 2015." Earthsure PCR Cradle-to-Gate 30171600:2015. A Program of the Institute for Environmental Research and Education. Vashon WA. 2015
EN 15804 2012	European Committee for Standardization (CEN). "EN15804:2012. Sustainability of construction works - Environmental product declarations— Core rules for the product category of construction products"
ISO 14040	International Standard Organization. ISO 14040:2006-10, Environmental management – Life cycle assessment – Principles and framework (ISO 14040:2006)." German and English version EN ISO 14040:2006 Geneva. 2006
ISO 14044	International Standard Organization. "ISO 14044:200610, Environmental management – Life cycle assessment – Requirements and guidelines (ISO 14044:2006)." German and English version EN ISO 14044:2006 Geneva. 2006
thinkstep. 2014	GaBi LCA Database Documentation. Retrieved from thinkstep AG: http://database- documentation.gabi-software.com
	The Life Cycle Assessment was conducted by thinkstep (formerly PE INTERNATIONAL) using GaBi data. thinkstep
Enviro	nment

1300 SYCAMORE DRIVE SE DOEE LCA GRANT DOCUMENT

ENVIRONMENTAL PRODUCT DECLARATION

ALUMINUM WINDOW WALL SYSTEMS

YKK AP AMERICA

Window wall systems are commonly used in ribbon window c punched openings as shown here on the Plaza Midtown building in Atlanta, GA.

All YKK AP® products are manufactured, finished, and inspected for quality in the YKK AP environmentally certified, state-of-the-art facility in Dublin, GA.

YKK AP America is taking positive steps toward sustainable manufacturing helping to balance ecology and economy-improving the environment and society over the long term. YKK AP® is the proud manufacturer of architectural products, including aluminum window wall systems, which provide safe and comfortable environments for building occupants and help reduce energy usage.

A dedicated partner in green building design and sustainability, YKK AP helps create innovative, high quality architectural systems that add to the strength, energy efficiency and longevity of the building envelope.

All YKK AP® products are created in a facility that is a model of environmental responsibility. YKK AP's U.S. manufacturing plant in Dublin, GA, is ISO 14001 certified and has been recognized by the U.S. Department of Energy for exceptional leadership in industrial energy efficiency.

For additional information, visit commercial.ykkap.com.

ENVIRONMENTAL PRODUCT DECLARATION YKK ap Quality

YKK AP America Aluminum Window Wall Systems

This declaration is an environmental product declaration (EPD) in accordance with ISO 14025. EPDs rely on Life Cycle Assessment (LCA) to provide information on a number of environmental impacts of products over their life cycle. Exclusions: EPDs do not indicate that any environmental or social performance benchmarks are met, and there may be impacts that they do not encompass. LCAs do not typically address the site-specific environmental impacts of raw material extraction, nor are they meant to assess human health toxicity. EPDs can complement but cannot replace tools and certifications that are designed to address these impacts and/or set performance thresholds - e.g. Type 1 certifications, health assessments and declarations, environmental impact assessments, etc. Accuracy of Results: EPDs regularly rely on estimations of impacts, and the level of accuracy in estimation of effect differs for any particular product line and reported impact. Comparability: EPDs are not comparative assertions and are either not comparable or have limited comparability when they cover different life cycle stages, are based on different product category rules or are missing relevant environmental impacts. EPDs from different programs may not be comparable.

PROGRAM OPERATOR	UL Environment
DECLARATION HOLDER	YKK AP America
DECLARATION NUMBER	4786832322.106.1
DECLARED PRODUCT	Aluminum Window Wall Systems
REFERENCE PCR	Part A: Calculation Rules for the LC/ V1.3, 06.19.2014), Part B: Requirem Jul. 2014), Part B Addendum: IBU P Berlin: Institut Bauen & Umwelt.
DATE OF ISSUE	November 13, 2015
PERIOD OF VALIDITY	5 Years
	Product definition and information at
	Information about basic material and
	Description of the product's manufact
CONTENTS OF THE	Indication of product processing
DECLARATION	Information about the in-use condition
	Life cycle assessment results
	Testing results and verifications
The PCR review was condu	ucted by:
This declaration was indepe 14025 by Underwriters Lab	endently verified in accordance with ISO oratories

1300 SYCAMORE DRIVE SE DOEE LCA GRANT DOCUMENT REDBRICK LMD 11.09.2021 REV A 35

According to ISO 14025

A and Requirements Project Report, (IBU/UL E, eents on the EPD for Curtain Walling (IBU, V1.6 CR for Curtain Walling (UL E, V1.0 Nov. 2015).	,
out huilding physics	
the material's origin	
sture	
ons	
IBU	
The Independent Expert Committee	
WBL	
Wade Stout, UL Environment	
Sponson Storie	
Thomas Gloria, Industrial Ecology Consultant	s

ENVIRONMENTAL PRODUCT DECLARATION YKK

YKK AP America Aluminum Window Wall Systems

According to ISO 14025

Product Definition

Category Description

Window wall systems are commonly used in ribbon window configurations or punched openings. The framing system spans from slab-to-slab and can be installed from the building's interior to improve logistics and reduce installation costs. Window wall systems can also employ floor slab edge covers that enable the system to mimic the look of a curtain wall system at a significantly reduced cost.

All YKK AP® products are manufactured, finished and inspected for quality in YKK AP's environmentally certified, state-of-the-art facility in Dublin, GA. As a result, YKK AP® products fit together without a lot of jobsite re-work. YKK AP offers a complete suite of tools and engineering services to assist in proper system selection, specification and installation.

Product Description

The following YKK AP America aluminum window wall systems are covered by this EPD (glazing is excluded from this study):

YCN 40 2" x 4-3/8" Front Loaded Ribbon Window

YCN 40 is an offset, front loaded ribbon window framing system designed for a clean, open look without exposed fasteners

YCN 40 T 2-1/4" x 4-3/8" Thermally Broken Front Loaded Ribbon Window

YCN 40 T is a thermally broken, offset, front loaded ribbon window framing system designed for a clean, open look without exposed fasteners.

ENVIRONMENTAL PRODUCT DECLARATION YKK ap Quality

YKK AP America Aluminum Window Wall Systems

The YWW 40 T system is designed specifically to meet the performance requirements of window walls for multi-story buildings.

The YWW 45 T system is designed specifically to meet the performance requirements of window walls for multi-story buildings. Glass is set to the front of the system to maximize thermal performance and may be glazed from either the interior of the building for labor savings or from the exterior at column line applications.

YWW 45 FI 2-1/4" x 4-1/2" High Performance Window Wall System

YWW 45 FI is designed specifically to meet the performance requirements of window walls for multi-story buildings. YWW 45-71 may be installed with head and sill members running continuously or with the head and sill members cut in between the vertical members. Sill flashing is only required when the head and sill members are cut in between the verticals; in addition, sill members are anchored without penetrating the sill flashing.

Environment

Environment

1300 SYCAMORE DRIVE SE DOEE LCA GRANT DOCUMENT

According to ISO 14025

YWE 60 T 2-1/4" x 6" High Performance Window Wall System

YWE 60 T is a thermally improved window wall system designed and engineered to meet the design challenges of today's new buildings. The system is capable of spanning from floor to floor, even at higher design loads.

WE 60T (with ssg vertical mullions) is comparable to the

YWW 45 T 2-1/4" x 4-1/2" Thermally Broken Window Wall System

ENVIRONMENTAL PRODUCT DECLARATION

YKK AP America Aluminum Window Wall Systems

According to ISO 14025

YWW 45 FS 1-3/4" x 4-1/2" High Performance/Flush Glazed Window Watt System

The YWW 45 FS system is designed specifically to meet the performance requirements of window walls for main-story buildings. Glass is set to the front of the system, and may be glazed from either the interior of the building for labor savings or from the exterior at column line applications. The system may be installed with head and sill members running continuously or with the head and sill members cut in between the vertical members. Sill flashing is only required when the head and sill members are cut in between the verticals; in addition, sill members are anchored without penetrating the sill flashing.

YWW 50 T 2-1/4" x 5" Thermally Broken Window Wall System with Optional Slab Edge Cover

YWW 50 T is a Window Wall glazing system designed for use in multi-story applications. It includes an innovative slab edge cover that yields the beauty and appearance of a curtain wall application. The glass plane is set to the front to maximize thermal performance. YWW 50 T is designed to accommodate 1" glazing infill and, with the use of adapters, can also accommodate 1/4" infill. The system has mullion options that allow glazing from the interior or the exterior. Structural Silicone Glazing is also an option. Thermal performance is enhanced by YKK AP's patented Mega-Therm® thermal break technology that also provides the system with dual finish capability. The screw spline assembly design makes fabrication and installation more efficient.

YWW 45 TU 2-1/4" x 4-1/2" Thermally Broken Window Wall System

YWW 45 TU is designed specifically to meet the performance requirements of window walls for multistory buildings. Glass is set to the front of the system to maximize thermal performance and may be glazed from either the interior of the building for labor savings or from the exterior at column line applications. YWW 45 TU is designed specifically to meet the performance requirements of window walls for multistory buildings. Glass is set to the front of the system to maximize thermal performance and may be glazed from either the interior of the building for labor savings or from the exterior at column line applications.

ENVIRONMENTAL PRODUCT DECLARATION

YKK AP America Aluminum Window Wall Systems

Technical Performance

Name	Notes*	Value	Unit
Thermal Transmittance (U-Factor) AAMA 1503.1, AAMA 507, and NFRC 100	1, 2, 4	0.33 - 0.39	Btu/hr• ft2•°F
Solar Heat-Gain Coefficient (SHGC) NFRC 200	1, 2, 4	0.23 - 0.24	
Condensation Resistance Factor (CRFf) AAMA 1503.1	2, 3, 4	57 - 70	
Water Infiltration ASTM E 331 and AAMA 501.1	2	10 – 15	psf
Air Infiltration ASTM E283 at 6.24 psf	2	0.06	cfm/ft ²

* (1) - Calculated based on U (COG) = 0.20 and SHGC (COG) = 0.25 (2) - Varies by product type (3) - Dependent on glazing specified (4) - Based on products tested ** Predominantly describes the framing

Industry Standards

AAMA 1801, ASTM E1425, ASTM E90, ASTM E413, ASTM E1332, ASTM E2235, ASTM E283, ASTM E330, AAMA 507, AAMA 1503, NFRC 100, NFRC 102, NFRC 200, NFRC 500, ASTM E331

YKK AP® does not test or rate the declared products for extraordinary effects, i.e., performance under unforeseeable influence of fire, water or mechanical destruction.

Delivery Status

YKK AP[®] window wall systems vary in size depending on the application. They are commonly used in ribbon window configurations or punched openings. The framing system spans from slab-to-slab and can be installed from the building's interior to improve logistics and reduce installation costs. Window wall systems can also employ floor slab edge covers that enable the system to mimic the look of a curtain wall system at a significantly reduced cost.

Environment

Environment

1300 SYCAMORE DRIVE SE DOEE LCA GRANT DOCUMENT

REDBRICK LMD 11.09.2021 REV A 37

According to ISO 14025

ENVIRONMENTAL PRODUCT DECLARATION

YKK AP America Aluminum Window Wall Systems

According to ISO 14025

Base and Ancillary Materials

Material	Mass [kg]	Mass [%]
Aluminum 6063	5.28 - 5.33	89.3 - 90.2
Anodizing coat, optional	0 – 3.23E-02	<1
Paint coat, optional	0 – 1.76E-02	<1
MegaTherm (Nylon 6.6/Glass fiber)	3.36E-02	<1
ThermaBond (Polyurethane)	1.38E-01	2.3
EPDM	3.65E-01	6.2
EVA	4.35E-05	<1
Nylon 6	6.08E-03	<1
Polyurethane foam	1.48E-03	<1
PVC	5.06E-03	<1
PVC foam	5.86E-05	<1
Stainless steel	4.22E-03	<1
Steel	2.66E-02	<1

Note: Glazing is excluded from this study.

Manufacturing

All YKK AP[®] products are manufactured, finished and inspected for guality in our environmentally certified, state-ofthe-art facility in Dublin, GA.

The manufacturing process comprises the following production stages:

1300 SYCAMORE DRIVE SE DOEE LCA GRANT DOCUMENT

REDBRICK LMD 11.09.2021 REV A 38

ENVIRONMENTAL PRODUCT DECLARATION

YKK AP America Aluminum Window Wall Systems

The main material input into the YKK AP manufacturing process is aluminum ingot. The ingot is first alloyed to the desired grade and cast into billets. Subsequently, the billets are extruded into profiles using steel dies that are manufactured on-site. The extruded profiles may then be anodized or painted. Optional thermal treatment, whereby a system is thermally broken, leads into the product's fabrication and assembly. In a last step, the complete assemblies are packed for shipment.

Packaging

YKK AP® products are primarily packaged using corrugated cardboard and wood components prior to shipping to installation sites.

Product Processing/Installation

Outside of the scope of this EPD (installation stage excluded).

Reference Service Life, Condition of Use

Outside of the scope of this EPD (use stage excluded).

End of Life: Recycling and Disposal (C4)

Name	Value	Unit
Recycling	4.94E+00	kg
Landfilling (non-recycled Aluminum, other materials)	9.69E-01	kg

Aluminum extrusions are a highly efficient sustainable building material. Aluminum is 100% recyclable and can be recycled repeatedly. Recycled aluminum is identical to smelted aluminum but requires only 1/20 of the energy to manufacture. In building and construction, aluminum scrap has a recycling rate of 95% [AA]. The remaining 5% is sent to landfill

AA. (2013). The Environmental Footprint of Semi-finished Aluminum Products in North America: A Life Cycle Assessment Report. Aluminum Association

Environment and Health

Product manufacturing: Plant emissions to air/soil/water are monitored (if applicable) and comply with local laws.

Product use: YKK AP® products are not expected to create exposure conditions that exceed safe thresholds for health impacts to humans or flora/fauna under normal operating conditions. Use stage is outside of the scope of this EPD.

Environment

According to ISO 14025

ENVIRONMENTAL PRODUCT DECLARATION

YKK AP America Aluminum Window Wall Systems

According to ISO 14025

Life Cycle Assessment – Product System and Modeling

A "cradle-to-gate with options" analysis using life cycle assessment (LCA) techniques was conducted for this EPD. The analysis was done according to the product category rule (PCR) for Curtain Walling and followed LCA principles, requirements and guidelines laid out in the ISO 14040/14044 standards. As such, EPDs of construction products may not be comparable if they do not comply with the same PCR. While the intent of the PCR is to increase comparability, there may still be differences among EPDs that comply with the same PCR (e.g., due to differences in system boundaries, background data, etc.).

Declared Unit

The declared unit for an EPD is one square meter (1 m ²)	Name	Value	Unit
of window wall product.	Declared unit	1	m ²
	Conversion factor to 1 kg	1/5.9	

System Boundaries

Per the PCR, this "cradle-to-gate with options" analysis provides information on the Product Stage of the aluminum product life cycle, comprising modules A1-A3, and on the "options" Disposal and Credits, i.e., modules C4 and D:

PRODU	JCT S	TAGE	CONSTR PROC STA	UCTION ESS GE			US	E STA	GE			END	O OF L	IFE ST	AGE	BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES
Raw material supply	Transport	Manufacturing	Transport	Construction-in- stallation pro- cess	Use	Maintenance	Repair	Replacement	Refurbishment	Operational en- ergy use	Operational wa- ter use	De-construction demolition	Transport	Waste pro- cessing	Disposal	Reuse- Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
X	X	X	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	x	x

Time coverage: Primary data were collected on production within calendar year 2014. Background data for upstream and downstream processes (i.e., raw materials, energy resources, transportation and ancillary materials) were obtained from the GaBi 2014 databases.

Technology coverage: Data were collected for the production of aluminum window wall products at YKK AP's manufacturing facility in the United States.

Geographical coverage: All YKK AP[®] products are manufactured in Dublin, Georgia, USA. As such, the geographical coverage for this study is based on United States system boundaries for all processes and products. Whenever US background data were not readily available, European data or global data were used as proxies.

Environment

YKK AP America Aluminum Window Wall Systems

Assumptions

This study was performed based on primary YKK AP data for the production of a production-weighted average curtain wall system. However, up to fabrication and assembly, where a bill of materials (BoM) specifies the parts which comprise an individual product, the underlying model was created to describe YKK AP® aluminum extrusions as generic intermediates. Thus, it was assumed that the same annual average split for surface treatments-i.e., 50% anodized, 18% painted, 32% remain mill finish-apply to extrusions going into window wall control products as well as extrusions going into other products, e.g., windows (see separate EPD).

Another assumption was made in accounting for packaging materials, i.e., wood and corrugated cardboard. Due to a lack of data granularity, which is, at least partially, owed to the realities on the factory floor, packaging materials were scaled with the aluminum content as identified in the BoM.

Beyond that, no significant assumptions have been made. All of the raw materials and energy inputs were modeled using processes and flows that closely follow actual production raw materials and processes. All of the material and energy flows have been accounted.

Allocation

No multi-output (i.e., co-product) allocation was performed in this study. Allocation of background data (energy and materials) taken from the GaBi 2014 databases is documented online at http://www.gabisoftware.com/support/gabi/gabi-6-lci-documentation/.

Cut-off Criteria

As required by EN 15804, in case of insufficient input data or data gaps for a unit process, the cut-off criteria were 1% of renewable and non-renewable primary energy usage and 1% of the total mass input of that unit process. The total of neglected input flows per module was a maximum of 5% of energy usage and mass.

In practice, all inputs and outputs, for which data are available, have been included in the calculation. Data gaps have been filled by conservative assumptions with average or generic data. Capital items for the production processes (machines, buildings, etc.) were not taken into consideration.

Background Data

In order to model the life cycle for the production and recycling of the extruded aluminum, the GaBi Professional software system developed by thinkstep AG was used. All relevant background data necessary for the production of extruded aluminum were taken from the GaBi 2014 databases.

LCA Practitioner

This EPD and the underlying LCA model were developed by thinkstep, Inc.

thinkstep

Environment

1300 SYCAMORE DRIVE SE DOEE LCA GRANT DOCUMENT

According to ISO 14025

ENVIRONMENTAL PRODUCT DECLARATION

YKK AP America Aluminum Window Wall Systems

According to ISO 14025

Life Cycle Assessment – Results and Analysis

Results given per declared unit: 1m² of window wall system.

ENVIRONMENT	AL IMPACTS
CML 2001 (Apr 2013)	

	Manufacturing Disposal		Disposal	Credits
Parameter	Unit	A1-A3	C4	D
GWP	kg CO ₂ eq	6.84E+01	4.86E-02	-5.05E+01
ODP	kg CFC-11 eq	4.93E-09	1.11E-12	-2.14E-09
AP	kg SO ₂ eq	4.59E-01	2.16E-04	-3.60E-01
EP	kg PO43 eq	2.44E-02	2.73E-05	-1.49E-02
POCP	kg C ₂ H ₄ eq	3.15E-02	2.16E-05	-1.81E-02
ADPE	kg Sb eq	7.88E-05	1.91E-08	-2.70E-05
ADPF	MJ	7.57E+02	7.56E-01	-4.64E+02

		Manufacturing	Disposal	Credits	
Parameter	Unit	A1-A3	C4	D	
GWP	kg CO ₂ eq	6.84E+01	4.86E-02	-5.05E+01	
ODP	kg CFC-11 eq	5.24E-09	1.18E-12	-2.27E-09	
AP	kg SO ₂ eq	4.43E-01	2.32E-04	-3.32E-01	
EP	kg N eq	1.02E-02	1.27E-05	-5.33E-03	
SP	kg O3 eq	4.16E+00	4.50E-03	-2.57E+00	
FF	MJ	6.05E+01	9.74E-02	-3.07E+01	

		Manufacturing	Disposal	Credits
Parameter	Unit	A1-A3	C4	D
PERE	[MJ]	3.25E+02	4.23E-02	-2.99E+02
PERM	[MJ]			
PERT	[MJ]	3.25E+02	4.23E-02	-2.99E+02
PENRE	[MJ]	7.95E+02	7.78E-01	-4.76E+02
PENRM	[MJ]			
PENRT	[MJ]	7.95E+02	7.78E-01	-4.76E+02
SM	[kg]	3.86E-01		
RSF	[MJ]			
NRSF	[MJ]	-		
FW	[m ³]	1.42E+00	-7.20E-04	-1.30E+00

		Manufacturing	Disposal	Credits
Parameter	Unit	A1-A3	C4	D
HWD	[kg]	5.16E-03	1.50E-07	-4.77E-03
NHWD	[kg]	1.79E+01	1.09E+00	-1.61E+01
RWD	[kg]	1.51E-02	8.65E-06	-5.02E-03
CRU	[kg]			
MFR	[kg]		6.76E+00	
MER	[kg]			
EEE	[MJ]			
EET	IMJI			

Gloss	ary
Environ	mental Impacts
GWP	Global warming potential
ODP	Depletion potential of the stratospheric ozone layer
AP	Acidification potential of land and water
EP	Eutrophication potential
POCP	Formation potential of tropospheric ozone photochemi cal oxidants
ADPE	Abiotic depletion potential for non-fossil resources
ADPF	Abiotic depletion potential for fossil resources
FF	Fossil fuel consumption

Resource Use PERE

- Use of renewable primary energy excluding renewa-ble primary energy resources used as raw materials; PERM Use of renewable primary energy resources used as raw materials
- Total use of renewable primary energy resources PERT PENRE Use of non-renewable primary energy excluding non-renewable primary energy resources used as
- raw materials PENRM Use of non-renewable primary energy resources used as raw materials
- PENRT Total use of non-renewable primary energy re
- SM Use of secondary material RSF Use of renewable secondary fuels
- NRSE Use of non-renewable secondary fuels FW Use of net fresh water
- **Output Flows and Waste Categories**
- HWD Hazardous waste disposed
- NHWD Non-hazardous waste disposed RWD Radioactive waste disposed
- CRU Components for re-use
- MFR Materials for recycling MER
- Materials for energy recovery EE Exported energy per energy carrier

ENVIRONMENTAL PRODUCT DECLARATION

YKK AP America Aluminum Window Wall Systems

Interpretation

The results represent the cradle-togate and disposal environmental performance of the evaluated window wall system. As shown in the figure to the right, the results indicate that the impacts are driven by the product stage (modules A1-A3). The primary impact is derived from upstream aluminum production in module A1 (raw material supply). The YKK AP manufacturing processes account for a relatively small part of the manufacturing impact in comparison.

As module D (material credit at the end of life) clearly impacts the results, it is important to note that the applied recycling rate of 95% represents a defensible rate for

aluminum extrusion products in the building and transportation sector. This is based on a conservative calculation for global aluminum recycling from these sectors. If a higher rate is used, the credit will increase, thus lowering the total life-cycle impacts. Similarly, a lower recycling rate would raise the total life cycle impacts. As new information becomes available (e.g., the Aluminum Association publishes regional-specific recycling rates), this EPD should be modified to reflect the most current industry conditions.

Data Quality Assessment

Temporal representativeness: All primary data were collected for the year 2014. All secondary data come from the GaBi 2014 databases and are representative of the years 2010-2013. Therefore, temporal representativeness is warranted. Geographical representativeness: All primary and secondary data were collected specific to the countries or regions under study. Where country-specific or region-specific data were unavailable, proxy data were used. Geographical representativeness is considered to be high. Technological representativeness: All primary and secondary data were modeled to be specific to the technologies or technology mixes under study. Where technologyspecific data were unavailable, proxy data were used. Technological representativeness is considered to be high. Precision: As the majority of the relevant foreground data are measured data or calculated based on primary information sources of the owner of the technology, precision is considered to be high. All background data are sourced from GaBi databases with the documented precision.

References

- IBU. (2014). PCR for Building-Related Products and Services Part A: Calculation Rules for the LCA and Requirements Project Report, (IBU/UL E, V1.3, 06.19.2014), Part B: Requirements on the EPD for Curtain Walling (IBU, V1.6, Jul. 2014), Part B Addendum: IBU PCR for Curtain Walling (UL E, V1.0 Nov. 2015). Berlin: Institut Bauen & Umwelt.
- ISO. (2006). ISO 14025: Environmental labels and declarations Type III environmental declarations Principles and procedures. Geneva: International Organization for Standardization
- EN. (2013). EN 15804:2012-04+A1 2013: Sustainability of construction works Environmental Product Declarations Core rules for the product category of construction products

Environment

Environment

1300 SYCAMORE DRIVE SE DOEE LCA GRANT DOCUMENT

D. KAWNEER CWALL **ONE CLICK LCA - BENCHMARK DATA**

We are unable to explain why the large against US and International benchmark data. We cannot ascertain the uniformity in the

	~
	=
	Show all
ichmark Ichmark	
nmark	

D. KAWNEER WWALL **ONE CLICK LCA - BENCHMARK DATA**

We are unable to explain why the large against US and International benchmark data. We cannot ascertain the uniformity in the

Benchmark for Alumium frame windows, 71 products, M2 - CO2 TRACI

	~
	≡
	Show all
chmark chmark	
mark	

E. COMBINED LCA DATA ARCHITECTURE + STRUCTURAL

The calculations for the combined are shown here in detail, and graphed in the following page.

Structure				
Category	A1-A3 Materials	A4 Transportation	C1-C4 End of life	Total kg CO2
2 - Concrete Option (BAU)	2448730	42291	13396	2504417
2 - Timber Option	1329005	55169	316149	1700324
2 - Concrete Option (Low Carbon)	2030947	42291	13396	2086634

Enclosure										
Category	A1-A3 Materials	A4 Transportation	A5 Construction	B3 Repair	B4-B5 Replacement	B6 Energy	B7 Water	C3-C4 Waste processing	B1 Use Phase	Total kg CO2
2 - SE P-17 B-2 (base)	3415485	9108	30091	0	53750	0	0	51490	0	3559924
2 - v1_base w/ rev CW-1 / WW-1	1357055	5203	26468	0	0	0	0	6741	0	1395467
2 - v2_CLT rev CW/WW rev rf memb	973477	3801	10413	0	0	0	0	4783	0	992475

Combined

combined						
	A1-A3 Materials	A4 Transportation	C1-C4 End of life	Total kg CO2	Reduction from baseline	
BAU Concrete (Baseline)	5864215	51399	64886	5980500	0	
Low-Carbon Concrete	3388003	47494	20137	3455633	2524867	42%
Mass Timber	2302482	58971	320933	2682386	3298114	55%

	Structure	Enclosure
BAU Concrete (Baseline)	2504417	3559924
Low-Carbon Concrete	2086634	1395467
Mass Timber	1700324	992475

Mass Timber

E. ENVELOPE + STRUCTURE COMBINED RESULTS

When compared to the Basis of wall, roofing membrane, and low carbon cast in place concrete)

A CLT structure -in lieu of the low carbon concrete- represents a 55% reduction in CO2e when compared to the Basis of Design.

E. ENVELOPE + STRUCTURE CO2e EQUIVALENCIES

WHAT DOES THIS MEAN?

To have a grasp of how much 2.5 million kilograms of CO2 really is, we

The Basis of Design embodied carbon is the equivalent of the use of electricity of 1,086 homes for 1 full year, or of 15 million miles travelled by an average car.

	Homes' electricity use for 1 year	Miles travelled by average car
BAU Concrete	1,086	15 millio
Low Carbon Concrete	4 59	↓ 6.3 milli
Timber	₹ 599	↓ 8.3 milli

F. CIP VS CLT **BUDGET COMPARISON**

CO2e savings vs. \$\$\$

The alternates analyzed for envelope and structure were priced, to see the these same components.

Design 2 represents a 2.4% premium in cost compared to the Basis of

Design 3 represents an 21.2% premium in cost compared to the Basis

	Interior Square Footing - 21'6"x21'6"x50"	856.00	CY	\$	550.00	\$ 470,800	Footings per ARUP Plans
	Irregular Footing	12.00	CY	\$	550.00	\$ 6,600	Footings per ARUP Plans
	Perimeter Square Footing - 17'6"x17'6"x44"	707.00	CY	\$	550.00	\$ 388,850	Footings per ARUP Plans
	Interior Square Footing - 8'0"x8'0"x22"	138.00	CY	\$	550.00	\$ 75,900	Footings per ARUP Plans
	Shear Wall/Core Pad Footing	648.00	CY	\$	550.00	\$ 356,400	Footings per ARUP Plans
	Perimeter Square Footing - 10'0''x10'0''x44''	231	CY	\$	550.00	\$ 127,050	Footings per ARUP Plans
	Interior Square Footing - 10'0"x10'0"x22"	216	CY	\$	550.00	\$ 118,800	Footings per ARUP Plans
	Interior Square Footing - 10'0"x10'0"x50"	185	CY	\$	550.00	\$ 101,750	Footings per ARUP Plans
	Garage Walls, Slab On Grade, Plaza Slab					See Below	Not a Variable in Comparison
	Ground Level Slab	25,093.00	SF	\$	38.00	\$ 953,534	Ground Level Slab (Supported Above Garage)
	CIP Shear Walls	6,900.00	SF	\$	50.00	\$ 345,000	
	Plaza Slab	6,702.00	SF	\$	38.00	\$ 254,676	Garage Roof/ Plaza Slab
	Typical Floors CIP Concrete Decks	139,438.00	SF	\$	39.00	\$ 5,438,082	CIP Structure Based on 156,586sf of elevated deck 2-PH
	Roof Slab	23,995.00	SF	\$	39.00	\$ 935,805	Roof and PH Roof
	Exterior Envelope and Roofing						
	Kawneer Curtainwall System	51,163.00	SF	\$	120.00	\$ 6,139,560	SF of full CW system including trims, mullions and IGUs
	Henry/Hydrotech hot fluid applied roofing	25,093.00	SF	\$	20.00	\$ 501,860	
	CIP Scheme Total	164,531.00	GSF	Ş	99.40	\$ 16,353,817	
2/% ¢ 7	Lew Carbon Consiste Mix Dramium	164 521 00	000	ć	0.01	ć 100.000	
	Low Carbon Concrete Mix Premium	164,531.00	GSF	Ş	0.61	\$ 100,000	
INCLUDES LOW	CLT Above Grade Structure						
	Wall Footing	54.00	CV	Ś	550.00	\$ 29.700	Footings per ABLIP Plans (Reduced for CLT)
CARBON CONCRETE,	Concrete Beam - 12"x20"	22.00	CV	Ś	550.00	\$ 12,100	Footings per ARUP Plans (Reduced for CLT)
ENVELOPE & ROOFING	Concrete Beam - 24"x20"	83.00	CY	Ś	550.00	\$ 45,650	Footings per ARLIP Plans (Reduced for CLT)
	Concrete Upturned Beam - 15"x20"	2.00	CY	Ś	550.00	\$ 1.100	Footings per ARUP Plans (Reduced for CLT)
	Concrete Grade Beam - 18"x30"	11.00	CY	Ś	550.00	\$ 6,050	Footings per ARLIP Plans (Reduced for CLT)
	Concrete Stran Beam - 48"x36"	17.00	CY	Ś	550.00	\$ 9,350	Footings per ARLIP Plans (Reduced for CLT)
	Interior Square Ecoting - 13'0"x13'0"x36"	225.00	CY	Ś	550.00	\$ 123,750	Footings per ARUP Plans (Reduced for CLT)
	Irregular Footing	12.00	CY	Ś	550.00	\$ 6.600	Footings per ARUP Plans (Reduced for CLT)
	Perimeter Square Footing - 11'0''x11'0''x24''	152.00	CY	Ś	550.00	\$ 83.600	Footings per ARUP Plans (Reduced for CLT)
	Interior Square Footing - 8'0"x8'0"x22"	138.00	CY	\$	550.00	\$ 75,900	Footings per ARUP Plans (Reduced for CLT)
	Shear Wall/Core Pad Footing	680.00	CY	\$	550.00	\$ 374,000	Footings per ARUP Plans (Reduced for CLT)
	Perimeter Square Footing - 10'0''x10'0''x44''	231.00	CY	\$	550.00	\$ 127,050	Footings per ARUP Plans (Reduced for CLT)
	Interior Square Footing - 10'0''x10'0''x22''	216.00	CY	\$	550.00	\$ 118,800	Footings per ARUP Plans (Reduced for CLT)
	Interior Square Footing - 10'0"x10'0"x50"	185.00	CY	\$	550.00	\$ 101,750	Footings per ARUP Plans (Reduced for CLT)
	Garage Walls, Slab On Grade, Plaza Slab					See Below	Not a Variable in Comparison
	Ground Level Slab	31,705.00	SF	\$	38.00	\$ 1,204,790	Ground Level Slab (Supported Above Garage)
	Plaza Slab		SF			N/A	Garage and Office Have Same Approx Footprint
	CIP Shear Walls	6,750.00	SF	\$	50.00	\$ 337,500	Higher Floor to Floor, 1 Less Floor
	18"x16" Glulam Column	28.00	EA			In CLT Deck	
	7-Ply CLT (Includes Columns and Beams)	142,862.00	SF	\$	57.00	\$ 8,143,134	Nordic Pricing Adjusted for Reduced Qty*
	5-Ply CLT (Includes Columns and Beams)	10,738.00	SF	\$	51.00	\$ 547,638	Nordic Pricing Adjusted for Reduced Qty* (PH Roof)
	3" NWC + 3/4" Acoustic Mat	153,600.00	SF	\$	8.00	\$ 1,228,800	
	18"x19" Glulam Column	28.00	EA			In CLT Deck	
	Exterior Envelope and Roofing						
	YKK Curtainwall System	53,721.00	SF	\$	120.00	\$ 6,446,520	SF of full CW system including trims, mullions and IGUs
	Sarnafil roofing	27,545.00	SF	\$	29.00	\$ 798,805	Roof size larger in CLT scheme
N 6666 7				-			
70 २२२२ 🛡	CLT Total	157,760.00	GSF	\$	125.65	\$ 19,822,587	

54.00 CY \$

77.00 CY \$

83.00 CY \$

2.00 CY \$

11.00 CY \$

17.00 CY \$

9.00 CY \$

550.00

550.00 Ś

550.00 \$

550.00 Ś

550.00 \$

550.00 \$

550.00 \$

Exterior Envelope and Roofing					
YKK Curtainwall System	53,721.00	SF	\$ 120.00	\$ 6,446,520	SF of full CW system including trims, mullions and IGU
Sarnafil roofing	27,545.00	SF	\$ 29.00	\$ 798,805	Roof size larger in CLT scheme
					-
CLT Total	157,760.00	GSF	125.65	19,822,587	
					-
Variance \$/GSF of Office		GSF	\$ 26.86		
Alternate for 175mm CLT ILO 245mm		GSF	\$ (6.50)		Reduced per reduced SF.** Needs Structural Analysis

*Nordic had 192,167sf of CLT deck at \$9,850,000. Average \$51.25/sf **Nordic Option Saved \$1,150,000 on 176,379sf of 7ply deck \$6.52/sf

DOEE Grant

CIP vs Timber Comparison DPR Construction 9/27/2021

Concrete Structure ructural Systems Vall Footing

oncrete Beam - 12"x20"

oncrete Beam - 24''x20''

oncrete Upturned Beam - 15"x20"

oncrete Grade Beam - 18"x30"

oncrete Strap Beam - 48''x36''

oncrete Beam - 24"x24"

1300 SYCAMORE DRIVE SE DOEE LCA GRANT DOCUMENT

REDBRICK LMD 11.09.2021 REV A 46 Timber Scheme GSF

Level	
	1
	1
	1
	1
	1

Office	
PH	
Total	

Additonal Structure
Main Roof
PH Roof

tructure Totals
Timber
CIP

Level	GFA	Structural Deck
1	25,093	CIP Concrete
2	24,892	CIP Concrete
3	24,892	CIP Concrete
4	24,892	CIP Concrete
5	24,892	CIP Concrete
6	23,995	CIP Concrete
	•	•
Office	148,656	
PH	15,875	CIP Concrete
Total	164,531	
Additonal Structure		
Main Roof	8,120	CIP Concrete
PH Roof	15,875	CIP Concrete
Structure Totals		
Timber	-	

188,526

cractare rotais	
Timber	
CIP	

Footings per ARUP Plans

42,350 Footings per ARUP Plans

45,650 Footings per ARUP Plans

1,100 Footings per ARUP Plans

6,050 Footings per ARUP Plans

9,350 Footings per ARUP Plans

4,950 Footings per ARUP Plans

29,700 F

GFA	Structural Deck
31,705	CIP Concrete (Garage Below)
27,545	Mass Timber
141,885	
15,875	Mass Timber
157,760	

11,670	Mass Timber
15,875	Mass Timber

153,600
31,705

F. AREA TAKEOFFS FOR BUDGET COMPARISON

These are the area takeoffs for the envelope (Design 1).

Sr No	Тиро	Condition		As per N	larrative		As pe	r Plan	
51 100.	туре	Condition	QTY1	UOM1	QTY2	UOM2	QTY	UOM	
1	A1010.11 CONTINUOUS FOOTINGS & GRADE BEAMS	Wall Footing	54	СҮ			54	CY	
2	A1010.11 CONTINUOUS FOOTINGS & GRADE BEAMS	Concrete Beam - 12"x20"	77	СҮ	1246	LF			Size of beam is
3	A1010.11 CONTINUOUS FOOTINGS & GRADE BEAMS	Concrete Beam - 24"x20"	83	СҮ	675	LF			Width of Beam
4	A1010.11 CONTINUOUS FOOTINGS & GRADE BEAMS	Concrete Upturned Beam - 15"x20"	2	СҮ	20	LF			Width of Beam
5	A1010.11 CONTINUOUS FOOTINGS & GRADE BEAMS	Concrete Grade Beam - 18"x30"	11	СҮ	77	LF			
6	A1010.11 CONTINUOUS FOOTINGS & GRADE BEAMS	Concrete Strap Beam - 48"x36"	17	СҮ	39	LF			
7	A1010.11 CONTINUOUS FOOTINGS & GRADE BEAMS	Concrete Beam - 24"x24"	9	СҮ	72	LF			
8	A1010.31 SPREAD FOOTINGS	Interior Square Footing - 21'6"x21'6"x50"	856	СҮ					
9	A1010.31 SPREAD FOOTINGS	Irregular Footing	12	СҮ			12	CY	
10	A1010.31 SPREAD FOOTINGS	Perimeter Square Footing - 17'6"x17'6"x44"	707	СҮ					
11	A1010.31 SPREAD FOOTINGS	Interior Square Footing - 8'0''x8'0''x22''	138	СҮ					
12	A1020.60 MAT FOUNDATIONS	Shear Wall/Core Pad Footing	648	СҮ			145	CY	For Plan Footir
13	A1010.31 SPREAD FOOTINGS	Perimeter Square Footing - 10'0''x10'0''x44''					231	СҮ	
14	A1010.31 SPREAD FOOTINGS	Interior Square Footing - 10'0''x10'0''x22''					216	CY	
15	A1010.31 SPREAD FOOTINGS	Interior Square Footing - 10'0''x10'0''x50''					185	CY	
16	(no type)	Core	6316	SF				-	-
17	A2010.10 SUBGRADE FRAME	12" Thick Foundation Walls - B1, 5000psi	9441	SF					-
18	A4010.10 SLAB ON GRADE	5" Slab on Grade	31795	SF					-
19	B1010.11 CONCRETE FRAME	12" One-Way Vault Slab, 7.5PSF Mild Reinf.	5724	SF					-
20	B1010.11 CONCRETE FRAME	12" Slab + 8" Drop Panels	1722	SF					
21	B1010.11 CONCRETE FRAME	8" Slab + 8" Drop Panels, 5.0PSE Mild, Rein,	69809	SF					
22	B1010.11 CONCRETE FRAME	10" PT Slab + 8" Drop Panels	4214	SF					
23	B1010 11 CONCRETE FRAME	9" Thick Concrete Slab	1194	SF					
24	B1010 11 CONCRETE FRAME	10" PT Slab + 10" Drop Panels	12673	SF					
25	B1010 11 CONCRETE FRAME	8" PT Slab + 8" Drop Panels	73162	SF					-
26	B1010 11 CONCRETE FRAME	Concrete Column - 16" Dia Ht - 26'1"	14	CY	8	FA			
20	B1010 11 CONCRETE FRAME	Concrete Rectangular Columns - 12"x24" Ht - 9	71	CY	10	FA			
28	B1010 11 CONCRETE FRAME	Concrete Parking Columns - 24"x24" Ht - 10'5"	32	CY	21	FΔ			
29	B1010 11 CONCRETE FRAME	Concrete Post Up Column - $24"x24"$, Ht - $10'7"$	6	СҮ	4	FA			
30	B1010 11 CONCRETE FRAME	Concrete Post Un Column - 16" Dia Ht - 18'8"	10	СҮ	10	FA			
31	B1010 11 CONCRETE FRAME	Concrete Column - 24"x24" Ht -26'1"	4	CY	1	FΔ			
32	B1010 11 CONCRETE FRAME	Concrete Column - 24"x24", Ht - 77'4"	229	СҮ	20	FA			
33	B1010 11 CONCRETE FRAME	Concrete Column - 24"x24" Ht - 10'5"	3	CY	20	FΔ			
34	B1010 11 CONCRETE FRAME	Concrete Column - 24"x24" Ht - 66'9"	40	CY	4	FΔ			
35	B1010 11 CONCRETE FRAME	Concrete Column - 24"x24", Ht - 96'0"	114	СҮ	8	FA			
36	B1010 11 CONCRETE FRAME	Concrete Post Un Column - 24"x24" Ht - 18'8"	14	CY	5	FΔ			
37	B20 Exterior	Glass	40494	SE					
32	B20 Exterior	Metal	16966	SF				1	+
30	B20 Exterior	Total Exterior Skin	60178	SE					-
40	B20 Exterior	% OF Glass	67 20%	5					-
40	B20 Exterior	% of Metal	28 10%						-
41			20.19%	1	1			L	

Comments	5
----------	---

as per narrative

assumed as per representation in plan and Height as per typical beam assumed as per representation in plan and Height as per typical beam

ng is taken without any offset

F. AREA TAKEOFFS FOR BUDGET COMPARISON

Sr No	Туре	Condition	As per N	Varrative	As pe	r Plan	
51 100.	туре	Condition	QTY	UOM	QTY	UOM	
1	A1010.11 CONTINUOUS FOOTINGS & GRADE BEAMS	Wall Footing	54	CY	54	CY	
2	A1010.11 CONTINUOUS FOOTINGS & GRADE BEAMS	Concrete Beam - 12"x20"	22	СҮ	360	LF	Width of Beam assumed
3	A1010.11 CONTINUOUS FOOTINGS & GRADE BEAMS	Concrete Beam - 24"x20"	83	СҮ	676	LF	Width of Beam assumed
4	A1010.11 CONTINUOUS FOOTINGS & GRADE BEAMS	Concrete Upturned Beam - 15"x20"	2	СҮ	20	LF	
5	A1010.11 CONTINUOUS FOOTINGS & GRADE BEAMS	Concrete Grade Beam - 18"x30"	11	CY	77	LF	
6	A1010.11 CONTINUOUS FOOTINGS & GRADE BEAMS	Concrete Strap Beam - 48"x36"	17	CY	39	LF	
7	A1010.31 SPREAD FOOTINGS	Interior Square Footing - 13'0"x13'0"x36"	225	СҮ			
8	A1010.31 SPREAD FOOTINGS	Irregular Footing	12	СҮ	12	CY	
9	A1010.31 SPREAD FOOTINGS	Perimeter Square Footing - 11'0''x11'0''x24''	152	СҮ			
10	A1010.31 SPREAD FOOTINGS	Interior Square Footing - 8'0"x8'0"x22"	138	CY			
11	A1020.60 MAT FOUNDATIONS	Shear Wall/Core Pad Footing	680	CY	145	CY	For Plan Footing is taken
12	A1010.31 SPREAD FOOTINGS	Perimeter Square Footing - 10'0''x10'0''x44''			231	CY	
13	A1010.31 SPREAD FOOTINGS	Interior Square Footing - 10'0"x10'0"x22"			216	CY	
14	A1010.31 SPREAD FOOTINGS	Interior Square Footing - 10'0"x10'0"x50"			185	CY	
15	(no type)	Core	5863	SF			
16	A2010.10 SUBGRADE FRAME	12" Thick Foundation Walls - B1, 5000psi	9441	SF			
17	A4010.10 SLAB ON GRADE	5" Slab on Grade	31795	SF			
18	B1010.11 CONCRETE FRAME	12" One-Way Vault Slab, 7.5PSF Mild Reinf.	5724	SF			
19	B1010.11 CONCRETE FRAME	12" Slab + 8" Drop Panels	1740	SF			
20	B1010.11 CONCRETE FRAME	8" Slab + 8" Drop Panels, 5.0PSF Mild. Rein.	23663	SF			
21	B1010.11 CONCRETE FRAME	Concrete Column - 24"x24", Ht - 10'5"	51	CY	33	EA	
22	B1010.11 CONCRETE FRAME	Concrete Column - 16" Dia, Ht - 26'1"	14	CY	8	EA	
23	B1010.11 CONCRETE FRAME	Concrete Rectangular Columns - 12"x24", Ht	71	CY	10	EA	
24	B1010.11 CONCRETE FRAME	Concrete Parking Columns - 24"X24", Ht - 10	35	CY	23	EA	
25	B1010.17 Wood Frame	18"x16" Glulam Column	28	EA			
26	B1010.17 Wood Frame	3" NWC + 3/4" Acoustic Mat + 7-Ply CLT	157457	SF			
27	B1010.17 Wood Frame	18"x19" Glulam Column	28	EA			
28	B20 Exterior	Glass	40494	SF			
29	B20 Exterior	Metal	16966	SF			
30	B20 Exterior	Total Exterior Skin	60178	SF			
31	B20 Exterior	% OF Glass	67.29%				
32	B20 Exterior	% of Metal	28.19%				

comments
connicito

as per representation in plan and Height as per typical beam as per representation in plan and Height as per typical beam

without any offset

CONCLUSIONS

REGULATION 1

The local DC government and the Federal Government should regulate against the use of regular CIP concrete and require the use of low carbon concrete. The carbon saving benefits outweigh the cost premium.

VALUE CREATION WITH CLT 2

On a site only constrained by density, not by surface area, the CLT option option has the most value creation potential.

3 COST VS. RENT

A rent increase of \$1.50/sf offsets a cost increase of \$26/sf .

DEMAND TRANSPARENCY & UNIFORMITY 4

Architects and Engineers should demand from manufacturers transparency and uniformity in the reporting of embodied carbon and Environmental Product Data.

