SEPTEMBER 30, 2020

NET-ZERO ENERGY PROJECT DESIGN ASSISTANCE FOR BRENT ELEMENTARY SCHOOL

FINAL REPORT

TABLE OF CONTENTS

01

FINAL REPORT 04

- General 08
- Grant Award Information 08
 - Status Report 08
 - Barriers to 09 Implementation
 - Activities/Outputs/ 09 Outcomes
 - Summary of Findings 15
- NZE Strategies- 16 Summary Of Estimates
 - Analysis Of 17 Embodied Carbon
 - NEP/LEP 17
 - Single Audit 18 Requirement
 - Budget Reporting 19

APPENDIX 20

02

- Work Plan 22
- Design Charette 26 Presentation
- Design Charette 37 Meeting Minutes
- Lessons Learned **42** Meeting with Flywheel
- Energy Conservation 44 Measures Spreadsheet
 - LCA Analysis 48
- Results per Life Cycle Stage **70**
 - NZE Strategies Estimate 71
 - Outputs of Energy 82 Modeling

FINAL REPORT

Project Team

DESIGN PARTNERS

DISTRICT OF COLUMBIA

hord | coplan | macht

General

Grant Award Information

- Project Title: Net-Zero Energy Project Design Assistance for Brent Elementary School
- DOEE ID #/Award Number: 2020-2008-USA-4 •
- Award Period: May 6, 2020 through September 30, 2020
- Specific Progress Reporting Period: Final Report

Status Report

- Briefly summarize the purpose and status of your project, including a statement as to whether or not the project is on time, on budget, and achieving the match.
- DCPS is seeking to fully modernize the existing Brent Elementary School at North Carolina Ave and 3rd St SE. This project proposes to augment our sustainability design efforts with the goal of for Brent Elementary School has been completed designing the school as a Net-Zero ready facility. The design work undertaken will reduce carbon emissions, as the energy saving strategies can be implemented into the design whether or not the project achieves Net Zero.

An initial budget of 55 million had been established for the school modernization. However, an estimate provided during concept phase ranged from 78-80 million. Even though the renovation of the school has been postponed until FY25, the project team considers the evaluation of NZE strategies highly relevant to this stage of design. The conclusions of this exercise will help inform future design decisions with valuable, quantifiable data.

Grantee Organization name: Moya Design

Grantee Organization primary contact

person(s) - telephone and email: Paola

Moya; paola@moyadesignpartners.com;

Partners

+1.301.442.2045

The Net-Zero Energy Project Design Assistance and has achieved the match. Due to COVID-19, the team was not able to pursue the 'Student Engagement' activity. Instead, the project team shifted the funds from 'Student Engagement' activity to the 'Detailed Energy Model' activity. This gave us the opportunity to run several options on our energy model and as a result helped us stream down our options to meet Brent's path for NZE performance.

Barriers to Implementation

Briefly summarize any barriers your project has ced, and if project implementation has been imp ded as a result.

DCPS has notified the design team that this p ject will be implemented no sooner than during t FY 2025/26 timeframe, inclusive of any progre on the design beyond the concept design period While DCPS still supports the work on the initiati it does mean that certain detailed design element will not be fully consolidated into the design. Wh this means for the Net Zero Initiative is that the o sign team will approach the design as an exercise determining what values and systems considered Energy Conservation Measures (ECMs) the project modeling iterations.

Activities/Outputs/Outcomes

List each specific activity conducted. These acti ties will correspond with Attachment 1 to the Grant • Presentation Award Notice, "Activities Funded."

Refer to Work Plan (See Appendix) for activities conducted as of 7/27/2020.

Integrated Design Charrette

Moya Design Partners, Hord Coplan Macht, Setty, and DCPS and DGS project management meet for an integrated design charette to review and evaluate sustainability and energy reduction strategies, determining the most feasible for this project and the best path to pursue zero energy.

fa-	should have, considered as a function of the preli-
be-	minary massing which has been developed during
	the concept design. The result will be a series of
	benchmark values and system selections that the
ro-	design team can use as a series of guideposts once
he	we are given a notice to proceed for the balance
ess	of the design.
od.	
ve,	Additionally, the COVID-19 pandemic impacted the
nts	likelihood that any meaningful student engagement
nat	exercise could be performed within the period re-
de-	quired by this grant funding. The design team pro-
e in	posed to reallocate the funding targeted to the
as	student engagement exercise to additional energy

vi-	See Appendix	for the	following:

- Meeting Minutes
- The below chart illustrates the current energy consumption (in EUI) for Brent ES, and a comparison of that consumption to national averages for education facilities as well as the targets for achieving a zero-energy facility. The initial baseline configuration based on code requirements for the selected massing Option (see Early Energy Modelling for more info) is also shown. This is the baseline EUI that will be used for the Detailed Energy Modelling process.

Lessons Learned

DOEE introduced the design team to Flywheel, who also received in 2019 a NZE Design Assistance grant. Flywheel had some related experience more complex and challenging. DOEE contacted with their project Stack 8, which has geothermal equipment in the public realm. Considering Brent Providence Park is not under DPR's jurisdiction. Elementary School's site constraints, the design team had thought of exploring the adjacent park (Providence Park) as a host for their geothermal wells. On September 10th of 2020, the design team met with Jessica Pitts (Flywheel) to discuss. Refer to meeting minutes on the appendix for highlights of the conversation.

On the project Stack 8, Flywheel only had to go through DDOT to get approval for having geothermal equipment in public space. However, it seems

the process to get approvals for having geothermal equipment on Providence Park could be much Nick Kushner, planner at DPR, who confirmed that

This means that the park likely falls under the jurisdiction of the Architect of the Capitol, which strongly implies that the land will be unavailable to host geothermal wells.

As a further lesson learned from the detailed energy modeling, the energy required to circulate water through a geothermal well field located at such a distance form the school resulted in a more energy intensive strategy than other options.

Early Energy Modeling

An initial round of energy modelling was performed to detailed energy modelling and eventual later stages evaluate the building massing and orientation options of design. This round of energy modelling considered considered at the conclusion of concept design for as its baseline the existing building configuration. This possible reductions in energy usage and aiding in the means that if no other variables are changed, the imselection of a concept for advancement into more pact to the building's energy usage can be estimated.

Below our findings:

The configuration for Option B resulted in the The next step in the early energy modelling process is highest energy savings over baseline. Option A to identify opportunities to strategically allocate fenesresulted in a smaller improvement in performance, trated area to balance the desire for views and daylighwhile Option C resulted in a modest increase in ting against the impact to the energy consumption of the building. The baseline for this iteration is the 40% energy consumption over baseline. Window to Wall Ratio (WWR) as defined by building codes. Since the optimum views for the site are to For the purposes of the Net Zero Initiative, Option the North and West, the design team believes that B will be the anticipated design configuration for the North Carolina Ave. façade of the building (the the building for all future analyses. Northwest façade) is the preferred place to increase glazing area while decreasing glazing areas elsewhere.

Note: Analysis is not intended to predict actual annual energy consumption of project - but is used as a comparative tool to help the team make informed decisions about design options

Below are the results of that analysis:

: Analysis is not intended to predict actual annual energy consumption of project – but is used as a comparative tool to help the team make informed decisions about design option:

In the floor plan, the Library spaces, building entry lo- the N/S oriented wing, so a corresponding reduction bby, and dining spaces all front along North Carolina Ave., making them ideal candidates for increased glazing areas. The bulk of the classrooms are located in for an overall reduction in energy consumption.

Detailed Energy Modeling

Several initial iterations of the Detailed Energy Modelling were performed by the project's engineer, Setty and Associates. This is a detailed iterative modeling process that evaluates the buildings envelope, HVAC systems, lighting, controls—all the main energy consumers of the building. Energy conservation measures (ECM) will be identified to help make informed decisions evaluating energy life cycle costs versus first construction cost.

in glazing (but by no means an elimination) from the baseline can be accommodated, while still providing

Refer to the following exhibits:

Energy Conservation Measures spreadsheet

The total square footage of the roof area for Concept B is 23,383. We are considering 55% of the roof area to be available for PVs. Based on this, the PV panel system we can install will generate about 400 KW.

Additional Concept B details:

	Existing	Concept B
Gross Square Footage:	46,000 SF	89,330 SF
Total Outdoor Area at Grade:	25,668 SF	35,386 SF
Roof Area for Solar/SWM:	N/A	23,383 SF
Parking Spots:	10	10

Energy modeling at this stage of design first requiand values, window to wall ratios, glazing types and res the creation of a baseline, code minimum builvalues, lighting power density, and HVAC system ding. The building's overall dimensions, orientation, was determined by ASHRAE 90.1-2010 Appendix and climate zone was input into eQuest modeling G listed values as code minimum for the proposed software. All other inputs such as envelope types building size, number of floors, and building usage.

Brent Elementary School Code Minimum values - ASHRAE 90.1-2010, Climate Zone 4A:

Opaque Elements	Assembly Maximum U-value	Insulation Min. R-value		
Roofs Insulation Entirely above Deck	0.048	R-20.0 c.i.		
Walls, Above-Grade Steel-Framed	0.064	R-13.0 + R-7.5 c.i		
Floors Steel-joist	0.038	R-30		
Slab-On-Grade Floors Unheated	F-0.730	Not Required		
Opaque Doors Swinging	0.700	-		
Fenestration	Assembly Maximum U-value	Assembly Maximum SHGC		
Vertical Glazing Metal framing	O.55	0.40		

Other values considered into the baseline code minimum building are as follows:

- Window-to-wall ratio is 40%.
- Interior Lighting Power Density of 0.99 W/sf for school/university type as per Table 9.5.1 using building area method as per ASHRAE 90.1-2010.
- Exterior lighting estimated at 0.15 W/sf.
- Elevator load estimated 40 HP.
- HVAC System 5 Packaged VAV with Reheat as per Table G3.1.1.A following Appendix G AS-HRAE 90.1-2010.
- Domestic hot water heating of gas storage tank type with 8-% efficiency 180F design hot water temperature and 50F loop delta following Appendix G ASHRAE 90.1-2010.

Non - Residential

Once all of the building's code minimum values were determined and input into the software, the final output of the program into our baseline code minimum building for Brent Elementary School was 49.9 kBtu/sf-yr.

After the baseline code minimum building EUI was established, many iterations of the energy model could be run with varying one or more parameters. From varying HVAC system types, to modifying building envelope values, the energy model has many uses in determining the best direction for design efforts.

Please find below data on different iterations.

Case	kBtu/ft2-yr	MBtu/yr	\$/yr
Iteration #1 - Baseline - 40% of window/ wall ratio for all sides of the building.	21.3	1852.2	60688
Iteration #2 - All sides of the building with a 35% window/wall ratio	20.9	1816.6	59404
Iteration #3 – E, W, and S walls have 35% ratio, N wall has 60% ratio	21.1	1833.1	59989
Iteration #4 - E, W, and S walls have 35% ratio, N wall has 70% ratio	21.1	1839.4	60211
Iteration #5 - Water cooled VRF	26.3	2253.6	74921

Energy modeling was completed by comparing two options, HVAC system and window/wall ratios to begin to understand where the most energy savings would come from. Historically, the first largest energy saving for a system would be through the HVAC system. The code baseline building, with packaged VAV with reheat per Appendix G in ASHRAE 90.1-2010, resulted in an EUI of 50.3.

From there, we explored HVAC system options with the following resultant EUI:

- **Option 1:** Full ground source heat pump using Providence Park - EUI 28.9
- **Option 2:** Hybrid ground source heat pump using site only plus air cooled VRF for additional capacity - 28.4. Note the water cooled VRF additional capacity is required due to the site • being capable of producing enough capacity for the proposed building.
- Option 3: VRF with DOAS - EUI 27.9
- **Option 4:** Full ground source heat pump with • water cooled VRF - EUI 26.3

We were then asked to run an energy model on the building with proposed envelope values (all above items were run with baseline envelope values, and only varying the HVAC systems). This option 5, with the proposed envelope values, used the common DC area school HVAC system of VRF with DOAS and gave us the EUI of 21.3. A second round of energy modeling was asked to compare window/wall ratio since this is historically the second most energy savings in a project. Using our Option 5 number, the window/wall ratio was compared the following ways and with the resultant EUIs:

- Option 5 has baseline 40% window/wall ratio on all building sides - EUI 21.3.
- **Option 6** was reducing window/wall ration to 35% on all building sides. - EUI 20.9
- **Option 7** was WWR of 35% on E, W, & S, 60% WWR on N - EUI 21.1.
- Option 8 was WWR of 35% on E, W, & S, 70% WWR on N - EUI 21.1.

FOR OUTPUTS OF THE ENERGY MODELING, PLEASE REFER TO APPENDIX.

SUMMARY OF FINDINGS

The design team undertook the Brent Net Zero initiative with the understanding that the end result would be a series of design criteria that could be followed once the design project resumed sometime around FY2025. While the design team is limited in how specific we can be in terms of the design and performance of the facility at this time, the grant activities have provided a few specific data points that will be worthwhile to the final design effort.

 System Selection – Ground Sourced Heat Pump vs. Hybridized Water Cooled VRF vs. Conventional VRF: As a result of the detailed energy modelling performed by Setty, it does not appear that GSHP will be a viable system for achieving NZE at this facility. Due to the restricted site size, geotechnical characteristics of the site, and distance required to circulate the water to a suitably sized well field, the GSHP system the best performer in terms of energy reduction. When coupled with the administrative and procedural hurdles in securing access to a suitable well field area, this option becomes even less attractive for consideration. One option which did arise from the charette was to create a hybridized system where a ground source water loop could be coupled to the condensing side of the VRF loop (rather than air in the typical VRF system). The detailed energy modelling indicated that this option would not be the most energy efficient either, due largely to the same issues with the GSHP system. Taken together, the design team's analysis indicates that the conventional VRF system, which is already commonly employed among recent DCPS modernization projects, is the most energy efficient option.

- Solar Orientation: The early energy modelling performed by HCM was able to confirm that the massing scheme selected during Concept Design would result in the most energy savings relative to the existing building.
- Window to Wall Ratio: A combination of early and detailed energy modelling was able to determine that a distribution of glazing that favored Northern exposures and reduced glazing on others could improve energy efficiency over the baseline thresholds (40% overall) while preserving access to views and transparency to the neighborhood.
- Envelope Design: Detailed energy modelling was able to confirm that an envelope assembly of moderate, but by no means extreme, energy consciousness could deliver energy savings that can get the project close to NZE.

While the design team was restricted to a more abstract "sandbox" during this exercise, there are numerous other energy saving strategies that can be explored once the project resumes design and more detail can be considered in the energy modelling. Daylighting strategies, reduction in plug loads, facility use and scheduling, and double walled and/or screened fenestration systems are all potential strategies that can be explored at that time and can help push the energy consumption of the building to below 20 EUI.

NZE STRATEGIES SUMMARY OF ESTIMATES

Summary of Estimates Item Description	Cost Differential Over Baseline
Estimate - Interation #1 Baseline - 40% Window/Wall ratio	\$5,548,978
Estimate - Interation #2 35% Window/Wall ratio in lieu of Baseline	(\$37,493)
Estimate - Interation #3 35% Window/Wall ratio; North 60% in lieu of Baseline	\$0
Estimate - Interation #4 35% Window/Wall ratio; North 70% in lieu of Baseline	\$14,997
Estimate - Interation #5 HVAC - Watercooled VRF System in lieu of Baseline VAV System	\$5,865,695

For more data per iteration, please refer to index.

After running some iterations of the energy model, we learned that the envelope and HVAC systems are the top two main factors that could bring the EUI closer to net-zero. Iteration #2 proposes having all sides of #2 allow us getting closer to our net-zero target, but the building with a 35% window/wall ratio, allowing us to get to an EUI of 20.9 - the closest we are getting

to our target of 20 EUI. Compared to the concept estimate project baseline, pursuing this iteration provide a total reduction of \$37,493. Not only iteration it also achieves project cost savings.

Results per Life Cycle Stage

Option 3 - CMU - Polyiso - Brick Option 4 - CMU - Spray - ACM Panel Option 5 - CMU - Spray - TAKTL Option 6 - CMU - Sprayfoam - Brick (primary)

Option 9 - Stud - Spray - ACM Option 10 - Stud - Spray - Brick Option 11 - Stud - Spray - TAKTL

ANALYSIS OF EMBODIED CARBON

Annually, the embodied carbon of building strucfacility is to reduce energy consumption and thus ture, substructure, and enclosures are responsible reduce GHG Emissions, reducing the embodied carfor 11% of global GHG emissions and 28% of global bon of the facility is a parallel and complementary building sector emissions. Eliminating these emisobjective that supports the same end result. sions is key to addressing climate change and mee-Performing a more comprehensive analysis of emting Paris Climate Agreement targets. While not bodied carbon in the ultimate design project will originally part of the scope of the Brent Net Zero contribute towards LEED credits and the ultimate Energy Initiative, we felt it would be informative to project goal of LEED Gold Certification. explore the broader context of carbon emissions related to the life cycle of the materials that make up For this round of analysis, we modeled a representative the building, from their initial manufacture, through assembly of 100 sf assuming typical assembly types transportation and installation and eventual disposal that we have used in school construction, both for DC or recycling. As the ultimate goal of pursuing a NZE and other clients. For each assembly, a continuous

MOYA DESIGN PARTNERS + hord coplan macht

Module D [D]

insulation value of R-13 was assumed. The model data was then filtered through Tally's database and the resulting graphs depict the varying levels of embodied carbon as a percentage of the most carbon intensive assembly.

The results of the analysis indicate that the use of CMU as an exterior wall backup material is a significant driver of embodied carbon, while on the exterior, curtain wall is significantly more carbon intensive than storefront. This information is useful as the overall wall materials have not been selected for this project, and there is a lot to be gained by selecting materials with a lower embodied carbon. The design team will have a reasonable amount of control over the extent and arrangement of the window area, and thus control over which components will require storefront versus curtain wall type framing, while also being in charge of generating the first round of material selection for the exterior palette. The use of steel stud as backup (and for interior partitions) is in keeping with DCPS's recent track record of projects. Ultimately, DCPS and the Commission of Fine Arts will have much to say about the materials used inside and outside of the building respectively, but this information will be useful once those conversations take place.

Once the project moves into Design Development, a more thorough analysis of the embodied carbon profile and alternative options can be performed, but this initial foray into the process has been illuminating as it provides a general impression of the carbon intensities of materials in a more general application.

NEP/LEP

For this progress reporting period, report the total number of ongoing program or special event participants, and the number of these participants with Low English Proficiency or No English Proficiency (NEP/ LEP). Attach the LEP/NEP Data Collection Sheet if the LEP/NEP count is greater than zero.

Not Applicable.

Single Audit Requirement

Report the end date of your organization's current fiscal year: Dec 31, 2020

In the progress reporting time period following the date of the close of the Grantee fiscal year, report to DOEE whether the Grantee is required to perform a single audit: Not required.

If your organization was required by the federal government to complete a single audit, submit that report to DOEE, as an attachment to this report, within nine months after this fiscal year-end date. Not Applicable.

If your organization is not required by the federal government to complete a single audit, then submit to DOEE the Sub-grantee Single Audit Exemption Certification, which is Attachment 7b to your grant award. Pending.

Budget Reporting

For the current reporting period (until Sept 15), update the status of the project budget against the amount awarded, per line item. See sample below.

Net-Zero Energy Project Design Assistance for Brent Elementary School

Budget Category	Amounts Awarded	Amount Matched	Amount Awarded Spent	Current Balance Awarded	Notes
Personnel					
Project Architect	\$ 950	\$ 950	\$ 950	\$ O	5 hrs (PA)x \$190
Project Manager	\$ 3,227.17	\$ 3,255.83	\$ 3,227.17	\$ O	20 hrs (PM)x \$180
Graphic Designer	\$ 750	\$ 750	\$ 750	\$ O	5 hrs (GD)x \$150
Admin/Editorial Content	\$ 600	\$ 600	\$ 600	\$ O	6 hrs (ADM) x \$100
Subtotal Personnel					
Indirect Costs (%)					
Total Personnel					
Direct					
Contractor or sub-grantee fees					
НСМ	\$ 5,527.17	\$ 5,555.83	\$ 5,527.17	\$ O	
SETTY	\$ 6,370.67	\$ 6,387.33	\$ 6,370.67	\$ O	
HANSCOMB	\$ 2,575.00	\$ 2,576.00	\$ 2,575.00	\$ O	
Travel and Training	N/A	N/A			
Supplies	N/A	N/A			
Equipment	N/A	N/A			
Rentals	N/A	N/A			
Other costs (one item per line)	N/A	N/A			
Total Direct					
Grand Total	\$ 20,000.00	\$ 20,075.00			

NETZERO ENERGY |

APPENDIX

MOYA DESIGN PARTNERS +

Idea

IMAGINE (

Work Plan

Work Plan Template Attachment 2

Please refer to your Grant Award Notice, Activities Funded:

Chart out your Activities in a Work Plan table similar to the one below. You may modify this chart's format if necessary. A Work Plan takes the ideas presented in a grant application and turns those ideas into a series of actionable steps that move a project from a concept toward an outcome. The Work Plan should break the long term goal (or outcome) into activities that create a series of discreet short term steps. Those activities can then be turned into quantifiable results (or outputs).

The following should be included in a Work Plan: an up-to-date budget, phasing, a timeline, a list of private and public partners, a breakdown of outcomes, outputs and activities with associated timelines and responsible parties.

The Work Plan is a document that will not only help the Grantee to strategize implementation, but will also facilitate communication between the Grantee and the DOEE. The Work Plan should lay out important milestones like the dates Progress Reports and Final Reports are due and the dates for the completion of activities specified in the grant. The Work Plan is not meant to be a rigid document, but rather a framework that provides organization. The Work Plan is based on the scope of activities in the Grant, but the Grantee should communicate with their Grant Manager frequently, especially if the Work Plan schedule needs to be adjusted. Please contact the Grant Administrator to see examples of work plans, should you need them.

Service #:								
Activity	Task(s)	Output	Outcome	Person(s) Responsible	Completion Date			
#0 – Submit Work Plan to DOEE [COMPLETED]	 a) MOYA/HCM to submit edits/remarks to the specific service requirements expected on the grant. 	MOYA/HCM to review activities listed on grant application and establish which ones are applicable to Brent ES considering that the project is on Concept Phase.	DOEE to review edits and approve Work Plan.	MOYA (leads) HCM	6/12/2020			
#1 – Conduct an integrated	 a) Conduct an integrated design charrette with key personnel from MOYA HCM, 	1) Design Team to schedule a conference call with design team and DCPS/DGS.	Gather feedback provided during design charrette, implement	MOYA HCM	7/10/2020			

design charrette		Setty, DCPS and DGS project	2)	Design Team to meet prior	it, and use it to		
[COMPLETED]	b)	Review and evaluate sustainability and energy reduction strategies, determining the most feasible for this project and the best path to pursue for NZE.	3)	brainstorm ideas and prepare material to be discussed during design charrette Based on the design charette's discussion, Design Team to start a draft of the Report to be submitted to DOEE and include a summary of findings and energy reduction strategies applicable to the project.	to pursue for NZE.		
≢2 – Early	a)	Conduct early energy modeling to assess	1)	MOYA/HCM to share Concept	Conducting an early	НСМ	1 st Week of
energy		building orientation and massing to		B with Setty.	energy modeling will	MOYA	August
modeling		evaluate energy saving potential relative	21	[COMPLETED]	guide the path for	Setty (leads)	
[COMPLETED]	h)	Look at the WWR window to wall area	2)	Model	identify the building	папรсонно	
	2,	ratios. [COMPLETED]		[COMPLETED]	needs and		
	c)	Establish a preliminary understanding of	3)	MOYA/HCM to provide	requirements.		
		the building's annual energy		feedback to Setty, as needed.			
		consumption and NZE targets using the		[COMPLETED]			
		design strategies identified in the	4)	Setty to revise energy model			
		charrette. [COMPLETED]		as needed.			
			5)	MOYA/HCM to submit final			
			5,	model with Hanscomb (cost			
				estimator).			
				[COMPLETED]			
			6)	Hanscomb to submit a cost			
				estimate of design strategies			
				proposed for NZE.			

#3 – Detailed energy modeling [COMPLETED]	a) b)	Conduct detailed, iterative energy modeling to evaluate all of the main energy consuming systems in the building, including the building envelope, HVAC systems, lighting, and controls; and Identify energy conservation measures to help make informed decisions evaluating life cycle costs versus first construction costs.	1)	Setty to perform a detailed energy modeling by analyzing Energy Conservation Measures. See form attached. MOYA/HCM/Cost Estimator to review.	Conducting a detailed energy modeling will help make informed decisions evaluating life cycle costs versus first construction costs.	HCM MOYA Setty (leads) Hanscomb	1 st Week of August
#4 – Student engagement [NOT APPLICABLE – FUNDS SHIFTED TO DETAILED ENERGY MODELING]	a) b)	Members of the design team will adapt existing curriculum to the specifics of the Brent Modernization project. The team will present the information and guide the students through hands- on a. activities to reinforce the concepts presented.	1) 2) 3) 4) 5) 6) 7)	DCPS to schedule a virtual design charrette with Brent ES students. MOYA/HCM to coordinate the content of the presentation. MOYA/HCM to prepare the slides. MOYA/HCM to share the slides with DOEE/DCPS/DGS. DOEE/DCPS/DGS to provide feedback. MOYA/HCM to revise the presentation accordingly. MOYA/HCM to prepare a report/meeting minutes of the meeting.	Gather feedback, thoughts and ideas from the student community and find ways to implement those in Brent ES modernization.	HCM (content of presentation) MOYA (presentation graphics, meeting minutes)	August/ September 2020
#5 – Report on work performed and results [COMPLETED]	a) b)	Meet with DOEE staff monthly to discuss project progress. [COMPLETED] Provide a Progress Report for the preceding quarter in accordance with the standardized progress-reporting template (Attachment 3) by July 27. [COMPLETED]	1) 2) 3)	MOYA/HCM to give DOEE suggested date and time for a recurring monthly check-in call. [COMPLETED] DOEE to set up cohort meeting with MOYA/HCM and other awardees. [COMPLETED] MOYA/HCM to continue working on Progress Report		HCM (content of presentation) MOYA (presentation graphics, meeting minutes)	 6/12/2020 Week of June 15 7/27/2020 9/16/2020 9/30/2020 10/14/2020

GOVERNMENT OF THE DISTRICT	RGY & NMENT		
	a. The Grantee shall attach to the		and s
	Progress Report a revised Work		[CON
	Plan if requested. [COMPLETED]		provi
c) Provide DOEE a draft Final Report in		MOY
	Microsoft Word format, (Attachment 4)		need
	two weeks before the end of the grant	4)	MOY
	period		repoi
	a. The following information	5)	DOEE
	should be included:		feedb
	i. A clear listing of the	6)	MOY
	activities conducted and		Repo
	an evaluation of their		
	effectiveness in		
	supporting the project's		
	pursuit of NZE		
	performance.		
	ii. Documentation		
	confirming that the		
	activities have been		
	completed prior to the		
	end of the grant period.		
	iii. Details on the activities		
	conducted to support a		
	case study.		
	iv. A basic proforma project		
	budget, if completed as		
	part of this analysis.		
	v. A copy of the energy		
	model outputs, if		
	completed as part of this		
	analysis; and		
	vi. Status of the		
	aevelopment project		
	and anticipated		
	completion date.		

submit to DOEE 1 st draft. MPLETED] DOEE to ide feedback and A/HCM to implement as led. A/HCM to work on final rt and submit to DOEE. E to review and provide back. A/HCM to submit Final rt		

Design Charette Presentation

14%

Source: EERE 2010.

Computers

Cooking

Refrigeration

Office Equipment

MOYA + hord | coplan | macht

RENEWABLES

10

J

DISTRICT OF COLUMBIA PUBLIC SCHOOLS

Renewable Energy

SYST	EMS		со	NTROLS		REN	EWABLE	S	
SAVING	GS -) .(\$)	AD CO CODE	DED ST > E BASE	SIMPLE PAYBACK (YRS)	(L	ANNUA EED: v4	L ENERGY S	SAV 0.1	INGS 2010)
7	(*/					02 (00)			
\$20)	\$ \$1	00 00	0 5					

ю.	MEASURE NAME	DESCRIPTION	ANNUA (ENERC	AL ENERGY	SAVINGS ECC 20)	ADDED COST >	SIMPLE PAYBACK	ANNUA (LEED: v4	L ENERGY	SAVINGS 0.1-2010)	
			USE (%)	COST (%	COST (\$)	CODE BASE	(185)	USE (%)	COST (%)	POINTS	
	RENEWABLE	5									
J	Photovoltaics	Code Baseline: None									
1	20% roof area										
2	40% roof area										
3	60% roof area		_								
1	Solar Canopies										
	COMBINATIO	DNS									
	Code Baseline	A + B + C + D + E + F + G + H + I									
С	As Designed	A1 + B1 + ? + ?									
1	Best Payback										
2	Best Performer										
3	Closest to Zero E	nergy									
4	Option TBD			1	1					I I	

	ECM REP	ORTING				
	K A B C D E F G H I J	CODE BASELINE	KO A B C D E F G H I J	AS DESIGNED	K3 A B C D E F G H I J	CLOSEST TO ZERO ENERGY
	0% \$0	% Annual Energy Use Savings Annual Energy Cost Savings	20%? \$?	% Annual Energy Use Savings Annual Energy Cost Savings	75%? \$?	% Annual Energy Use Savings Annual Energy Cost Savings
	\$0 0	Additional First Cost Year(s), Simple Payback	\$0 0	Additional First Cost Year(s), Simple Payback	\$? ?	Additional First Cost Year(s), Simple Payback
L	?	EUI	?	EUI	15?	EUI
	?	LEED Points	?	LEED Points	?	LEED Points
14		strict of columbia UBLIC SCHOOLS				МОУД + hord coplan macht

33

Design Charette Meeting Minutes

PROJECT NAME: Brent Ele PROJECT NO. : 13_2019	mentary School-NetZero Award
July 14, 2020	PROJECT NAME WEEKLY PROGRESS M
Eupert Braithwaite	MEETING MINUTES 001
Department of General Services Amanda Ou	
District of Columbia Public Schools	Dear Eupert, Amanda and Casey
Sent Via Email to:	
eupert.braithwaite@dc.gov amanda.ou2@dc.gov	On Friday, July 10th of 2020, the Charette and discussed the follo

	DESCRIPTION	STATUS	IN- COURT	RESPONSE TO ITEM
E	Brent Elementary Net Zero Energy Initiative			
1.1 <u>N</u>	 Net Zero Energy Grant The goal of this grant is to understand what is required for a building to become net zero. There is nothing that ties this project to be net zero but the aim is to gather data and advise future projects on the requirements needed for the implementation of this initiative. The net zero initiative was not included in this projects RFP. MOYA+HCM saw it as a good opportunity to include it in the design. Once the grant opportunity came up, we thought it would be a good opportunity to include it in this project. Starting early is key to make this initiative as successful as possible. 	INFO	-	-
1.2	Brent Elementary School Currently Brent's energy use intensity stands at 58.7, where the DOE zero energy ready schools	INFO	-	-

hord coplan macht

ETING

MOYA+HCM+SETTY met with DGS and DCPS for the first NetZero Design ing:

hord coplan macht

between 15-20. Once the project target is set a detailed energy analysis of the school will be		1	1	
completed.				
 The preferred layout of the school that is being further developed is known as "Library as a beacon" also knowns as scheme "B". 				
 The first story of the library building will be the art, music & science floor while the second story will be the library. 				
 Below the building will be the covered plaza that will be connected to the outdoor play area. If the project unfolds in phases there is a desire to get classrooms in first prior to the library, 				
but we are analyzing the project at an end goal perspective.The gym is located in the basement level.				
 The second floor of the building will be for the pre-k and kindergarten classes. The third floor will be for 1st -3rd grade classes, where the first 1st grade classroom will be 				
slightly larger. Classroom layouts have been analyzed, we opted for double loaded corridors having				
 classrooms on each side in this current theme. The overall form and organization of the building was considered when designing the building 				
 with conservation of energy in mind. There is currently no desire to keep the existing building at this moment, the initial phase would 				
be to increase capacity whereas the second phase would be to bring the building to be fully modernized for DCPS.				
Energy Consumption	INFO	-		-
 Currently the most energy in schools is spent on heating, lighting, and cooling which accounts for approximately 71% of energy use. 				
 72% of Electric consumption in school is used on lighting, cooling, and office equipment. Once the target is get for the project and the apartures have been each ged, we will then 				
 Once the target is set for the project and the energy use has been analyzed, we will then investigate potential for renewable energy. 				
 Orientation and picking the right massing are one of the first steps during conceptual design to aid in the design for net zero initiatives. 				
 The code building ratio to start with is a 40% window to wall ratio. We can then analyze the impact of slightly changing this ratio and seeing the energy improvements we can achieve by doing this. 				
 If we were to have approximately 80% windows on the south wall of the library, we might look at having 30% on the other. By analyzing different scenarios, we could come up with an optimal solution for recommendation that balances design and esthetics of the building. 				
Geothermal Systems	INFO	-		-
• Typical Geothermal wells are no more than 2 tons per well, if this building is approximately				

	 The building. A possible hybridized system approach of 1/s off site could be possible. The school currently uses the parks for some of their activi installed upgrades to the park would be needed which would be needed which would be at the site. Anything that is permanently associated with the property line and not the right of way (storm water manage) The current property area (excluding the right of way) woul accommodate a complete geothermal system that will be needs of the school. The city might need to revisit their laws to allow for these pright of way when space is limited. The system could also be installed under the gym floor, bub be done to assess viability. A hybrid system to add a boiler or cooling tower to a geoth supplement the system to be able to meet the needs of the schould be done as soon as possible to see if the this project or not.
1.5	property. Solar Panel Systems & Green Roof • We looked into how to integrate solar panels onto a green We have come up with a method on how this can be accorr the panels on supports at specified angles. • Solar panel system partnerships can be further investigat selected businesses/school with a reduced electric fee fro solar panels on their nearby building.

ľ	\ \	/	1		())	Ņ	/	1		<u>_</u>	
n	F	ŝ	1	Ċ,	N	p	٨	R	т	N	F	R	9

hord | coplan | macht

approximately 200 feet apart ystems would be about the size			
across is a federal park and the th these parks would be			
an be used to include the ld be investigated to which nplete geotechnical system for he wells will be on site and 2/3			
if geothermal wells were to be enefit the community as a whole. ed in the "right of way" area of ding will have to fall within the It, wells).			
t be large enough to to meet the heating and cooling			
ble upgrades to fall within the			
ther investigation would have to			
Il system could also be viable to 1001. thermal system is feasible for			
y of installing wells on their			
as it is required for this project. ned having greenery in between	INFO	-	-
/almart has previously supplied he energy produced from their			

MEETING MINUTES 001

DESIGN PARTNERS

hord coplan macht

	 building. We can also look into vertical solar skins for the building as well as solar canopy options and not only focus on the roof of the building for solar initiatives. The green roof area ratio calculation uses a point system that includes many variables and alternative ways to achieve the ratio. Additional ways to improve the ratio would be to improve roof storm water management using plants if space is limited. We would also like this roof area to be an educational one for the students to see the benefits of having these systems in place as it related to having a net zero building. Past projects have been set up to be able to accommodate solar initiatives but have not progressed through with the installation of the systems. Since buildings are now going to be set up as net zero, incentives will be provided to follow through with the installation of these systems. Most modernization projects going forward will be required to be net zero buildings. 			
1.6	 Estimates An initial cost estimate for the project has been completed. The cost estimator used code walls as a starting point, if we were to increase insulation of those walls by 10% we would then need to assess the additional cost of the insulation to be added to the base price already estimated. If this project is to proceed to be net zero there is a buffer budget that can be used to follow through with these initiatives. Once we select and analyze the energy saving improvements, we would then present a list of changes to the estimator. The base price estimated plus the extra costs for the energy improvements will be presented. Models have been done with massing but not yet with actual building walls. Now would be a good time to build walls for the interior & exterior. 	INFO	-	-
1.7	 Glazing & Solar Shading Exterior skin dimensions are what is required for the modeling software to build the code baseline model. Roof & Walls insulation, once the code baseline model is created, we can then generate the curve that will provide us with the optimal point of improvement to be made to have significant effect. Solar shading on the east/west walls are of greatest importance, MOYA to provide the design with the required dimensions. 	ACTION	ΜΟΥΑ	7/15-MOYA provided dimensioned plans to SETTY.

MEETING MINUTES 001

Amanda Ou (DCPS) Eupert Braithwaite (DGS) Marilaura Guerrero (MOYA) Greg Miller (MOYA) Lisa Ferretto (HCM) Shayne Pintur (HCM) Jenine Kotob (HCM) Paul Lund (HCM) Ashley Staples (SETTY) Gowtham SL (SETTY) MOYA DESIGN PARTNERS + hord coplan macht

hord | coplan | macht

MEETING MINUTES 001

Lessons Learned Meeting with Flywheel

					hord coplan machi
ROJ	ECT NAME: Brent Ele ECT NO. : 13_2019	mentary School-NetZero Award			
Septem Eupert I Departn	ber 10, 2020 Braithwaite nent of General Services	PROJECT NAME WEEKLY PROGRESS MEETING MEETING MINUTES 003			
Amondo	-				
District Sent Via	a Ou of Columbia Public Schools a Email to:	Dear Eupert, Amanda and Casey,			
Sent Via eupert.t amanda	a Du of Columbia Public Schools a Email to: braithwaite@dc.gov a.ou2@dc.gov BUSINESS	Dear Eupert, Amanda and Casey, On Friday, September 10 th of 2020, MOYA met with Fl Design Initiative: DESCRIPTION	ywheel and	d discuss BALL- IN-	sed the following on the NetZero
Sent Via Beupert.t amanda	a Du of Columbia Public Schools a Email to: braithwaite@dc.gov a.ou2@dc.gov BUSINESS	Dear Eupert, Amanda and Casey, On Friday, September 10 th of 2020, MOYA met with Fl Design Initiative: DESCRIPTION	ywheel and STATUS	d discuss BALL- IN- COURT	sed the following on the NetZero RESPONSE TO ITEM

DESIGN PARTNERS
hord coplan macht
now, it might require a taller order to get approval.

MEETING MINUTES 003

Energy Conservation Measures Spreadsheet

Project Name

ECM, Energy Conservation Measures

09.22.2020

NG			ANNUAL (ENERGY	ENERGY CODE: IE	SAVINGS ECC 2013)	ADDED	SIMPLE
NO.	MEASURE NAME	DESCRIPTION	USE (%)	COST (%)	COST (\$)	CODE BASE	(YRS)
	ENVELOPE						
A	Window Wall Ratio	Code Baseline: 40%					
A1	35%	35% all building directions					
A2	35%/60%	35% E, W, & S/ 60% N					
A3	35%/70%	35% E, W, & S/ 70% N					
A4	Proposed Building	40%					
в	Glazing Values	Code Baseline: U-0.55, SHGC- 0.40 *Assembly Values					
B1	10% > code						
B2	20% > code						
В3	30% > code						
B4	Proposed Building	U-0.47, SHGC-0.40					
с	Wall Insulation	Code Baseline: U-0.064 (R-13 + R-7.5 ci)					
C1	10% > code						
C2	20% > code						
С3	30% > code						
C4	Proposed Building	U-0.048					
D	Roof Insulation	Code Baseline: U-0.048 (R-20 ci)				\$0	0
D1	10% > code				\$20	\$100	5
D2	20% > code						
D3	30% > code						
D4	Proposed Building	U-0.027					
	SYSTEMS						
E	HVAC	Code Baseline: Packaged VAV with Reheat per Appendix G ASHRAE 90.1-2010					
E1	Option 1	Full GSHP using Providence Park					
E2	Option 2	Hybrid GSHP Site Only					

BEHIND THE SCENES DATA

Image: construct of the second seco	ANNUAL	ENERGY S	AVINGS			ANNUAL	ANNUAL		
Image: Section of the sectio	USE (%)	COST (%)	POINTS	NO.	EUI	USE (10^6 Btu/yr)	COST (\$/year)	COST	NOTES
Image: Section of the section of th									
Image: State of the state				-1	21,3	1852,2	\$60.688		Using proposed building values and VRF with DOAS HVAC
1 211 18331 \$59,989 Using proposed building values and VRF with DOAS HVAC A3 211 1839,4 \$60,211 Using proposed building values and VRF with DOAS HVAC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td></td> <td></td> <td></td> <td>-1</td> <td>20,9</td> <td>1816,6</td> <td>\$59.404</td> <td></td> <td>Using proposed building values and VRF with DOAS HVAC</td>				-1	20,9	1816,6	\$59.404		Using proposed building values and VRF with DOAS HVAC
Image: Second				-1	21,1	1833,1	\$59.989		Using proposed building values and VRF with DOAS HVAC
Image: state of the state				A3	21,1	1839,4	\$60.211		Using proposed building values and VRF with DOAS HVAC
Image: Section of the section of th				-1					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				-1					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				-1					
Image: Series of the series				-1					
				B3					
-1 -1 <td< td=""><td></td><td></td><td></td><td>-1</td><td></td><td></td><td></td><td></td><td></td></td<>				-1					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				-1					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				-1					
Image: C3				-1					
Image: state stat				C3					
Image: Sector				-1					
-1 -1 \$1.000.100 -1 -1 -1 D3 -1 -1 -1 -1				-1				\$1.000.000	
Image: Second				-1				\$1.000.100	
D3 D3 Image: Constraint of the second o				-1					
Image: Sector				D3					
Image: Constraint of the second se				-1					
Image: Appendix and the symbol and									
-1 28,9 2515 \$84.203 -1 28,4 2468,7 \$82.183				-1	50,3	4373,9	\$104.335		
-1 28,4 2468,7 \$82,183				-1	28.9	2515	\$84,203		
				-1	28,3	2468.7	\$82.183		

hord coplan macht

Project Name

ECM, Energy Conservation Measures

09.22.2020

NO		DESCRIPTION	(ENERGY	CODE: IE	CC 2013)		SIMPLE
NO.		DESCRIPTION	USE (%)	COST (%)	COST (\$)	CODE BASE	(YRS)
E3	Option 3	VRF with DOAS					
E4	Option 4	Full GSHP plus water cooled VRF					
E5	Proposed Building	VRF with DOAS					
F	Lighting: Interior	Code Baseline: 0.99 w/sf					
F1	20% reduction						
F2	35% reduction						
F3	50% reduction						
F4	Proposed Building	0.53 w/sf					
G	Lighting: Exterior	Code Baseline: 0.15 w/sf					
G1	20% reduction						
G2	35% reduction						
G3	50% reduction						
G4	Proposed Building	3.8 KW					
н	Hot Water	Code Baseline: Gas Storage Type with 80% eff 180F- 50F loop					
H1	Option 1						
H2	Option 2						
	CONTROLS						
I	Controls	Code Baseline: n/a					
11	Energy Recovery						
12	Occupancy Sensors						
13	Other						
	RENEWABLES						
J	Photovoltaics	Code Baseline: None					
J1	20% roof area						
J2	40% roof area						
J3	60% roof area						
J4	Solar Canopies						
	COMBINATIONS						
к	Code Baseline	A + B + C + D + E + F + G + H + I					
ко	As Designed	A1 + B1 + ? + ?					
К1	Best Payback						
К2	Best Performer						
К3	Closest to Zero Energy						
K4	Option TBD						

BEHIND THE SCENES DATA

ANNUAL	ENERGY S ASHRAE 9	SAVINGS 00.1-2010)	NO	EUU	ANNUAL USE		FIRST	NOTES
USE (%)	COST (%)	POINTS	NO.	EOI	(10^6 Btu/yr)	(\$/year)	COST	NOTES
			E3	27,9	2430,1	\$81.186		
			E4	26,3	2253,6	\$60.211		
			E5	21,3	1852,2	\$60.668		
			-1					
			-1					
			-1					
			F3					
			-1					
			-1					
			-1					
			-1					
			G3					
			-1					
			-1					
			-1					
			-1					
			-1					
			-1					
			-1					
			-1					
			-1					
			-1					
			-1					
			-1					
			-1					
			KO					
			K1					
			K2					
			K3					
			K4					

hord coplan macht

LCA Analysis

BRENT ES

Design option comparison 9/18/2020 BRENT ES Design option comparison

Table of Contents

1

 Report Summary

 LCA Results

 Results per Life Cycle Stage

 Results per Life Cycle Stage, itemized by Division

 Results per Division

 Results per Division, itemized by Tally Entry

 Results per Division, itemized by Material

 Results per Revit Category

 Results per Revit Category, itemized by Family

 Appendix

 Calculation Methodology - Life Cycle Assessmen

 Calculation Methodology - Environmental Impact

 LCI Data

tally.

MOYA DESIGN PARTNERS + hord coplan macht

	9/18/2020
	2
	4
۱	5
	6
	7
	8
	0
	9
	10
t Methods	11
	12
ct Categories	13
	14

Design option comparison

Report Summary (continued)

9.387 kg SO₂eq

Acidification

Potential

Legend

5.400E-004

4.800E-004

4.200E-004

3.600E-004

3.000E-004

2.400E-004

1.800E-004

1.200E-004

6.000E-005

kg CFC-11eq

Legend

► Net value (impacts + credits)

Design Options

Option 1 - CMU - EIFS Option 2 - CMU - Mineral Wool - Brick Option 3 - CMU - Polyiso - Brick Option 4 - CMU - Spray - ACM Panel Option 5 - CMU - Spray - TAKTL Option 6 - CMU - Sprayfoam - Brick (primary) Option 7 - Curtain Wall Option 8 - Storefront Option 9 - Stud - Spray - ACM Option 10 - Stud - Spray - Brick Option 11 - Stud - Spray - TAKTL

Life Cycle Stages

4

tally

BRENT ES

Legend

Design Options Option 1 - CMU - EIFS Option 2 - CMU - Mineral Wool - Brick Option 3 - CMU - Polyiso - Brick Option 4 - CMU - Spray - ACM Panel Option 5 - CMU - Spray - TAKTL Option 7 - Curtain Wall Option 8 - Storefront Option 9 - Stud - Spray - ACM Option 10 - Stud - Spray - Brick

Legend

Design Options

Option 1 - CMU - EIFS Option 2 - CMU - Mineral Wool - Brick Option 3 - CMU - Polyiso - Brick Option 4 - CMU - Spray - ACM Panel Option 5 - CMU - Spray - TAKTL Option 6 - CMU - Sprayfoam - Brick (primary) Option 7 - Curtain Wall Option 8 - Storefront Option 9 - Stud - Spray - ACM Option 10 - Stud - Spray - Brick Option 11 - Stud - Spray - TAKTL

Divisions

6

tally

BRENT ES

Option 1 - CMU - EIFS Option 2 - CMU - Mineral Wool - Brick Option 3 - CMU - Polyiso - Brick Option 4 - CMU - Spray - ACM Panel Option 5 - CMU - Spray - TAKTL Option 7 - Curtain Wall Option 8 - Storefront Option 9 - Stud - Spray - ACM Option 10 - Stud - Spray - Brick

54

9/18/2020

Results per Division, itemized by Material

Legend

8

Option 1 - CMU - EIFS Option 2 - CMU - Mineral Wool - Brick Option 3 - CMU - Polyiso - Brick Option 4 - CMU - Spray - ACM Panel Option 5 - CMU - Spray - TAKTL Option 7 - Curtain Wall Option 8 - Storefront Option 9 - Stud - Spray - ACM Option 10 - Stud - Spray - Brick

Curtainwall Panels

tally

9/18/2020

Legend

Design Options

Option 1 - CMU - EIFS Option 2 - CMU - Mineral Wool - Brick Option 3 - CMU - Polyiso - Brick Option 4 - CMU - Spray - ACM Panel Option 5 - CMU - Spray - TAKTL Option 6 - CMU - Sprayfoam - Brick (primary) Option 7 - Curtain Wall Option 8 - Storefront Option 9 - Stud - Spray - ACM Option 10 - Stud - Spray - Brick Option 11 - Stud - Spray - TAKTL

Curtainwall Mullions Rectangular Mullion

Curtainwall Panels

System Panel Walls

	X0B8A - 8" CMU - 2" Mineral Wool - Air Barrier - Brick
	X0B8A - 8" CMU - 2" Rigid - Air Barrier - Brick
	X0B8A - 8" CMU - 2" Spray - ACM
	X0B8A - 8" CMU - 2" Spray - Brick
	X0B8A - 8" CMU - 2" Spray - TAKTL
	X0B8A - 8" CMU - 3.5 EPS EIFS
	X0M6A - GWB - 6" Stud - Sheathing - 2" Spray - ACM
	X0M6A - GWB - 6" Stud - Sheathing - 2" Spray - BRICK
	X0M6A - GWB - 6" Stud - Sheathing - 2" Spray - TAKTI

10

Calculation Methodology

LIFE CYCLE ASSESSMENT METHODS

The following provides a description of terms and methods associated with the use of Tally to conduct life cycle assessment for construction works and construction products. Tally methodology is consistent with LCA standards ISO 14040-14044, ISO 21930:2017, ISO 21931:2010, EN 15804:2012, and EN 15978:2011. For more information about LCA, please refer to these standards or visit www.choosetally.com.

Studied objects

BRENT ES

The life cycle assessment (LCA) results reported represent an analysis of a single building, multiple buildings, or a comparative analysis of two or more building design options. The assessment may represent the complete architectural, structural, and finish systems of the building(s) or a subset of those systems. This may be used to compare the relative environmental impacts associated with building components or for comparative study with one or more reference buildings. Design options may represent a full or partial building across various stages of the design process, or they may represent multiple schemes of a full or partial building that are being compared to one another across a range of evaluation criteria.

Functional unit and reference unit

A functional unit is the quantified performance of a product, building, or system that defines the object of the study. The functional unit of a single building should include the building type (e.g. office, factory), relevant technical and functional requirements (e.g. regulatory requirements, energy performance), pattern of use (e.g. occupancy, usable floor area), and the required service life. For a design option comparison of a partial building, the functional unit is the complete set of building systems or products that perform a given function. It is the responsibility of the modeler to assure that reference buildings or design options are functionally equivalent in terms of scope and relevant performance. The expected life of the building has a default value of 60 years and can be modified by the modeler.

The reference unit is the full collection of processes and materials required to produce a building or portion thereof and is quantified according to the given goal and scope of the assessment over the full life of the building. If construction impacts are included in the assessment, the reference unit also includes the energy, water, and fuel consumed on the building site during construction. If operational energy is included in the assessment, the reference unit includes the electrical and thermal energy consumed on site over the life of the building.

Data source

Tally utilizes a custom designed LCA database that combines material attributes, assembly details, and architectural specifications with environmental impact data resulting from the collaboration between KieranTimberlake and thinkstep. LCA modeling was conducted in GaBi 8.5 using GaBi 2018 databases and in accordance with GaBi databases and modeling principles.

tally

11

9/18/2020

The data used are intended to represent the US and the year 2017. Where representative data were unavailable, proxy data were used. The datasets used, their geographic region, and year of reference are listed for each entry. An effort was made to choose proxy datasets that are technologically consistent with the relevant entry.

Data quality and uncertainty

Uncertainty in results can stem from both the data used and their application. Data quality is judged by: its measured, calculated, or estimated precision; its completeness, such as unreported emissions; its consistency, or degree of uniformity of the methodology applied on a study serving as a data source; and geographical, temporal, and technological representativeness. The GaBi LCI databases have been used in LCA models worldwide in both industrial and scientific applications. These LCI databases have additionally been used both as internal and critically reviewed and published studies. Uncertainty introduced by the use of proxy data is reduced by using technologically, geographically, and/or temporally similar data. It is the responsibility of the modeler to appropriately apply the predefined material entries to the building under study

System boundaries and delimitations

The analysis accounts for the full cradle to grave life cycle of the design options studied across all life cycle stages, including material manufacturing, maintenance and replacement, and eventual end of life. Optionally, the construction impacts and operational energy of the building can be included within the scope. Product stage impacts are excluded for materials and components indicated as existing or salvaged by the modeler. The modeler defines whether the boundary includes or excludes the flow of biogenic carbon. which is the carbon absorbed and generated by biological sources (e.g. trees, algae) rather than from fossil resources.

Architectural materials and assemblies include all materials required for the product's manufacturing and use including hardware, sealants, adhesives, coatings, and finishing. The materials are included up to a 1% cut-off factor by mass except for known materials that have high environmental impacts at low levels. In these cases, a 1% cut-off was implemented by impact.

Design option comparison

Calculation Methodology

LIFE CYCLE STAGES

The following describes the scope and system boudaries used to define each stage of the life cycle of a building or building product, from raw material acquisition to final disposal. For products listed in Tally as Environmental Product Declarations (EPD), the full life cycle impacts are included, even if the published EPD only includes the Product stage [A1-A3].

Product [EN 15978 A1 - A3]

This encompasses the full manufacturing stage, including raw material extraction and processing, intermediate transportation, and final manufacturing and assembly. The product stage scope is listed for each entry, detailing any specific inclusions or exclusions that fall outside of the cradle to gate scope. Infrastructure (buildings and machinery) required for the manufacturing and assembly of building materials are not included and are considered outside the scope of assessment.

Transportation [EN 15978 A4]

This counts transportation from the manufacturer to the building site during the construction stage and can be modified by the modeler.

Construction Installation [EN 15978 A5] (Optional)

This includes the anticipated or measured energy and water consumed on-site during the construction installation process, as specified by the modeler.

Maintenance and Replacement [EN 15978 B2-B5]

This encompasses the replacement of materials in accordance with their expected service life. This includes the end of life treatment of the existing products as well as the cradle to gate manufacturing and transportation to site of the replacement products. The service life is specified separately for each product. Refurbishment of materials marked as existing or salvaged by the modeler is also included.

Operational Energy [EN 15978 B6] (Optional)

This is based on the anticipated or measured energy and natural gas consumed at the building site over the lifetime of the building, as indicated by the modeler.

9/18/2020

End of Life [EN 15978 C2-C4]

This includes the relevant material collection rates for recycling, processing requirements for recycled materials, incineration rates, and landfilling rates. The impacts associated with landfilling are based on average material properties, such as plastic waste, biodegradable waste, or inert material. Stage C2 encompasses the transport from the construction site to end-of-life treatment based on national averages. Stages C3-C4 account for waste processing and disposal, i.e., impacts associated with landfilling or incineration.

Module D [EN 15978 D]

This accounts for reuse potentials that fall beyond the system boundary, such as energy recovery and recycling of materials. Along with processing requirements, the recycling of materials is modeled using an avoided burden approach, where the burden of primary material production is allocated to the subsequent life cycle based on the quantity of recovered secondary material. Incineration of materials includes credit for average US energy recovery rates.

PRODUCTCONSTRUCTIONA1. Extraction A2. Transport (to factory) A3. ManufacturingA4. Transport (to site) A5. Construction Installation	USE B1. Use B2. Maintenance B3. Repair B4. Replacement B5. Refurbishment B6. Operational energy B7. Operational water	END-OF-LIFE C1. Demolition C2. Transport (to disposal) C3. Waste processing C4. Disposal	MODULE D D. Benefits and loads beyond the system boundary from: 1. Reuse 2. Recycling 3. Energy recovery
---	--	---	--

Life-Cycle Stages as defined by EN 15978. Processes included in Tally modeling scope are shown in bold. Italics indicate optional processes.

12

9/18/2020 BRENT ES Design option comparison Calculation Methodology **ENVIRONMENTAL IMPACT CATEGORIES** A characterization scheme translates all emissions and fuel use associated with the reference flow into quantities of categorized environmental impact. As the degree that the emissions will result in environmental harm depends on regional ecosystem conditions and the location in which they occur, the results are reported as impact potential. Potential impacts are reported in kilograms of equivalent relative contribution (eq) of an emission commonly associated with that form of environmental impact (e.g. kg CO2eq). The following list provides a description of environmental impact scheme, the environmental impact model developed by the US EPA environmental impact reporting format for LCA in North America. Impacts associated with land use change and fresh water depletion are not included in TRACI 2.1. For more information on TRACI 2.1, reference Bare 2010, EPA 2012, and Guinée 2001. For further description of measurement of environmental impacts in LCA, see Simonen 2014. **Acidification Potential (AP)** kg SO₂eq **Smog Formation Potential (SFP)** kg O₃eq A measure of emissions that cause acidifying effects to the A measure of ground level ozone, caused by various chemical environment. The acidification potential is a measure of a reactions between nitrogen oxides (NO_x) and volatile organic molecule's capacity to increase the hydrogen ion (H⁺) concentration compounds (VOCs) in sunlight. Human health effects can result in a variety of respiratory issues, including increasing symptoms of in the presence of water, thus decreasing the pH value. Potential effects include fish mortality, forest decline, and the deterioration of bronchitis, asthma, and emphysema. Permanent lung damage may building materials. result from prolonged exposure to ozone. Ecological impacts include damage to various ecosystems and crop damage. **Eutrophication Potential (EP)** kg Neq Primary Energy Demand (PED) MJ (lower heating value) A measure of the impacts of excessively high levels of macronutrients, the most important of which are nitrogen (N) and A measure of the total amount of primary energy extracted from phosphorus (P). Nutrient enrichment may cause an undesirable shift the earth. PED tracks energy resource use, not the environmental in species composition and elevated biomass production in both impacts associated with the resource use. PED is expressed in energy demand from non-renewable resources and from renewable aquatic and terrestrial ecosystems. In aquatic ecosystems, increased biomass production may lead to depressed oxygen levels caused by resources. Efficiencies in energy conversion (e.g. power, heat, steam, etc.) are taken into account when calculating this result. the additional consumption of oxygen in biomass decomposition. **Global Warming Potential (GWP)** kg CO₂eq Non-Renewable Energy Demand MJ (lower heating value) A measure of greenhouse gas emissions, such as carbon dioxide A measure of the energy extracted from non-renewable resources and methane. These emissions are causing an increase in the (e.g. petroleum, natural gas, etc.) contributing to the PED. absorption of radiation emitted by the earth, increasing the natural Non-renewable resources are those that cannot be regenerated greenhouse effect. This may, in turn, have adverse impacts on within a human time scale. Efficiencies in energy conversion (e.g. ecosystem health, human health, and material welfare. power, heat, steam, etc.) are taken into account when calculating this result. **Ozone Depletion Potential (ODP)** kg CFC-11eq **Renewable Energy Demand** MJ (lower heating value) A measure of air emissions that contribute to the depletion of the stratospheric ozone layer. Depletion of the ozone leads to higher A measure of the energy extracted from renewable resources (e.g. hydropower, wind energy, solar power, etc.) contributing to the levels of UVB ultraviolet rays reaching the earth's surface with detrimental effects on humans and plants. As these impacts tend to PED. Efficiencies in energy conversion (e.g. power, heat, steam, etc.) be very small. ODP impacts can be difficult to calculate and are are taken into account when calculating this result. prone to a larger margin of error than the other impact categories.

categories reported according to the TRACI 2.1 characterization to quantify environmental impact risk associated with emissions to the environment in the United States. TRACI is the standard

13

Design option comparison

LCI Data

END-OF-LIFE [C2-C4]

A Life Cycle Inventory(LCI) is a compilation and quantification of inputs and outputs for the reference unit. The following LCI provides a summary of all energy, construction, transportation, and material inputs present in the study. Materials are listed in alphabetical order along with a list of all Revit families and Tally entries in which they occur, along with any notes and system boundaries accompanying their database entries. Each entry lists the detailed scope for the LCI data sources used from the GaBi LCI database and identifies the LCI data source.

For LCI data sourced from an Environmental Product Declaration (EPD), the product manufacturer, EPD identification number, and Program Operator are listed. Where the LCI source does not provide data for all life cycle stages, default North American average values are used. This is of particular importance for European EPD sources, as EPD data are generally only provided for the product stage, and North American average values are used for the remaining life cycle stages.

Where specific quantities are associated with a data entry, such as user inputs, energy values, or material mass, the quantity is listed on the same line as the title of the entry.

TRANSPORTATION [A4]

Default transportation values are based on the three-digit material commodity code in the 2012 Commodity Flow Survey by the US Department of Transportation Bureau of Transportation Statistics and the US Department of Commerce where more specific industry-level transportation is not available.

9/18/2020

Transportation by Barge

- The data set represents the transportation of 1 kg of material from the manufacturer location to the building site by barge.
- LCI Source: GLO: Average ship, 1500t payload capacity/ canal ts (2017) US: Diesel mix at filling station ts (2014)

Transportation by Container Ship Scope:

The data set represents the transportation of 1 kg of material from the manufacturer location to the building site by container ship

LCI Source: GLO: Container ship, 27500 dwt payload capacity, ocean going ts (2017) US: Heavy fuel oil at refinery (0.3wt.% S) ts (2014)

Transportation by Rail

Scope: The data set represents the transportation of 1 kg of material from the manufacturer location to the building site by cargo rail.

LCI Source GLO: Rail transport cargo - Diesel, average train, gross tonne weight 1000t / 726t payload capacity ts (2017) US: Diesel mix at filling station ts (2014)

Transportation by Truck Scope:

The data set represents the transportation of 1 kg of material from the manufacturer location to the building site by diesel truck.

LCI Source:

US: Truck - Trailer, basic enclosed / 45,000 lb payload - 8b ts (2017) US: Diesel mix at filling station ts (2014)

BRENT ES

Design option comparison

LCI Data (continued)

END-OF-LIFE [C2-C4]

Specific end-of-life scenarios are detailed for each entry based on the US construction and demolition waste treatment methods and rates in the 2016 WARM Model by the US Environmental Protection Agency except where otherwise specified. Heterogeneous assemblies are modeled using the appropriate methodologies for the component materials.

End-of-Life Landfill

Materials for which no recycling or incineration rates are known, no recycling occurs within the US at a commercial scale, or which are unable to be recycled are landfilled. This includes glass, drywall, insulation, and plastics. The solids contents of coatings, sealants, and paints are assumed to go to landfill, while the solvents or water evaporate during installation. Where the landfill contains biodegradable material, the energy recovered from landfill gas utilization is reflected as a credit in Module D.

LCI Source:

US: Glass/inert on landfill ts (2017) US: Biodegradable waste on landfill, post-consumer ts (2017)

US: Plastic waste on landfill, post-consumer ts (2017)

Concrete End-of-Life

Scope: Concrete (or other masonry products) are recycled into aggregate or general fill material or they are landfilled. It is assumed that 55% of the concrete is recycled. Module D accounts for both the credit associated with off-setting the production aggregate and the burden of the grinding energy required for processing.

LCI Source:

US: Diesel mix at refinery ts (2014) GLO: Fork lifter (diesel consumption) ts (2016) EU - 28 Gravel 2/32 ts (2017) US: Glass/inert on landfill ts (2017)

Metals End-of-Life

Metal products are modeled using the avoided burden approach. The recycling rate at end of life is used to determine how much secondary metal can be recovered after having subtracted any scrap input into manufacturing (net scrap). Net scrap results in an environmental credit in Module D for the corresponding share of the primary burden that can be allocated to the subsequent product system using secondary material as an input. If the value in Module D reflects an environmental burden, then the original product (A1-A3) contains more secondary material than is recovered.

LCI Source:

Aluminum - RNA: Primary Aluminum Ingot AA/ts (2010) Aluminum - RNA: Secondary Aluminum Ingot AA/ts (2010) Brass - GLO: Zinc mix ts (2012) Brass - GLO: Copper (99.99% cathode) ICA (2013 Brass - EU-28: Brass (CuZn20) ts (2017) Copper - DE: Recycling potential copper sheet ts (2016) Steel - GLO: Value of scrap worldsteel (2014) Zinc - GLO: Special high grade zinc IZA (2012)

Wood End-of-Life

15

End of Life waste treatment methods and rates for wood are based on the 2014 Municipal Solid Waste and Construction Demolition Wood Waste Generation and Recovery in the United States report by Dovetail Partners, Inc. It is assumed that 65.5% of wood is sent to landfill, 17.5% to incineration, and 17.5% to recovery.

LCI Source:

US: Untreated wood in waste incineration plant ts (2017) US: Wood product (OSB, particle board) waste in waste incineration plant ts (2017) US: Wood products (OSB, particle board) on landfill, post-consumer ts (2017) US: Untreated wood on landfill, post-consumer ts (2017) RNA: Softwood lumber CORRIM (2011)

14

tally

62

MOYA DESIGN PARTNERS + hord coplan macht

9/18/2020

I		
	_	

Design option comparison

LCI Data

PRODUCT [A1-A3]

Materials and components are listed in alphabetical order along with a list of all Revit families and Tally entries in which they occur. The masses given here refer to the quantity of each material used over the building's life-cycle, which includes both Product [A1-A3] and Use [B2-B5] stages.

Additional provided data describing scope boundaries for each life cycle stage may be useful for interpretation of the impacts associated with the specific material or component. Each material or component is listed with its service life, or period of time after installation it is expected to meet the service requirements prior to replacement or repair. This value is indicated in parentheses next to the mass of the material associated with the listed Revit family. Values for transportation distance or service life shown with an asterisk (*) indicate user-defined changes to default values. Values for service life shown with a dagger (+) indicate materials identified by the modeler as existing or salvaged.

Aluminum extrusion, AEC - EPD Used in the following Revit families: X0B8A - 8° CMU - 2° Spray - ACM X0M6A - GWB - 6° Stud - Sheathing - 2° Spray - ACM	27.2 kg 13.6 kg (50 yrs) 13.6 kg (50 yrs)
Used in the following Tally entries: Aluminum faced composite wall panel (ACM)	
Description: Extruded aluminum part. Industry-wide EPD from the Aluminum Extruc	ders Council.
Life Cycle Inventory: For information and quantities, see EPD	
Product Scope: Cradle to gate	
Transportation Distance: By truck: 663 km	
End-of-Life Scope: 95% Recovered 5% Landfilled (inert material)	
Module D Scope: Product has 36.4% scrap input while remainder is processed and credit burden	ed as avoided
LCI Source: RNA: Aluminum extrusion, mill finish - AEC (A1-A3) ts-EPD (2015) RNA: Primary Aluminum Ingot AA/ts (2010) RNA: Secondary Aluminum Ingot AA/ts (2010)	
EPD Source: <u>11240237.101.1</u>	
EPD Designation Holder: Aluminum Extruders Council (AEC)	
EPD Program Operator: UL Environment	
EPD Expiration: 10/4/2021	
Aluminum extrusion, thermally-improved mill-anodized, AEC - EPD Used in the following Revit families: Rectangular Mullion	7.3 kg 7.3 kg (50 yrs)
Used in the following Tally entries: Aluminum mullion, inclusive of finish	
Description: Anodized, thermally-improved, or thermal barrier, aluminum extrusion EPD from the Aluminum Extruders Council. EPD representative of cond America	s. Industry-wide litions in North
Life Cycle Inventory: For information and quantities, see EPD	

16

9/18/2020

ransportation Distance.	
By truck: 663 km	
ind-of-Life Scope: 95% Recovered 5% Landfilled (inert material)	
Nodule D Scope: Credit given for the avoided burden associated with recovere	d material
.CI Source: EPD (US), American Extruders Council (2016)	
PD Source: <u>11240237.102.1</u>	
PD Designation Holder: Aluminum Extruders Council (AEC)	
PD Program Operator: UL Environment	
PD Expiration: 10/4/2021	
uminum-faced composite wall panel (ACM), MCA - EPD Jsed in the following Revit families: X088A - 8" CMU - 2" Spray - ACM X0M6A - GMB - 6" Stud: Shothing - 2" Spray - ACM	153.7 kg 76.8 kg (50 yrs) 76.8 kg (50 yrs)
Jsed in the following Tally entries: Aluminum faced composite wall panel (ACM)	70.0 kg (30 yrs)
Description: Aluminum facings bonded to both sides of a thermoplastic co aluminum-faced panels 0.157 (4mm). Entry includes necessar Industry-wide EPD from the Metal Construction Association.	ore. Overall thickness of y adhesives and fasteners.
.ife Cycle Inventory: For information and quantities, see EPD.	
Product Scope:	
Cradle to gate	
Cradle to gate *ransportation Distance: By truck: 663 km	
Cradle to gate rransportation Distance: By truck: 663 km ind-of-Life Scope: 95% of aluminum recovered 5% of aluminum landfilled (inert waste) 100% of polyurethane landfilled (plastic waste)	
Cradle to gate Transportation Distance: By truck: 663 km ind-of-Life Scope: 95% of aluminum recovered 5% of aluminum landfilled (inert waste) 100% of polyurethane landfilled (plastic waste) Adoule D Scope: All recovered aluminum is processed and credited as avoided	burden
Cradle to gate Transportation Distance: By truck: 663 km ind-of-Life Scope: 95% of aluminum recovered 5% of aluminum landfilled (inert waste) 100% of polyurethane landfilled (plastic waste) vlodule D Scope: All recovered aluminum is processed and credited as avoided CI Source: US: Metal composite material (MCM) panel MCA (2010)	burden
Cradle to gate Transportation Distance: By truck: 663 km sind-of-Life Scope: 95% of aluminum recovered 5% of aluminum landfilled (inert waste) 100% of polyurethane landfilled (plastic waste) Module D Scope: All recovered aluminum is processed and credited as avoided CI Source: US: Metal composite material (MCM) panel MCA (2010) PD Source: <u>13CA27321.101.1</u>	burden
Cradle to gate Transportation Distance: By truck: 663 km Sind-of-Life Scope: 95% of aluminum recovered 5% of aluminum landfilled (inert waste) 100% of polyurethane landfilled (plastic waste) 40dule D Scope: All recovered aluminum is processed and credited as avoided CI Source: US: Metal composite material (MCM) panel MCA (2010) PD Source: 13CA27321.101.1 PD Designation Holder: Metal Construction Association (MCA)	burden
Cradle to gate Transportation Distance: By truck: 663 km ind-of-Life Scope: 95% of aluminum recovered 5% of aluminum landfilled (inert waste) 100% of polyurethane landfilled (plastic waste) Module D Scope: All recovered aluminum is processed and credited as avoided CI Source: US: Metal composite material (MCM) panel MCA (2010) IPD Source: <u>13CA27321.101.1</u> IPD Designation Holder: Metal Construction Association (MCA) IPD Program Operator: UL Environment	burden
Cradle to gate Transportation Distance: By truck: 663 km ind-of-Life Scope: 95% of aluminum recovered 5% of aluminum landfilled (inert waste) 100% of polyurethane landfilled (plastic waste) 40dule D Scope: All recovered aluminum is processed and credited as avoided CI Source: US: Metal composite material (MCM) panel MCA (2010) IPD Source: 13CA27321.101.1 IPD Designation Holder: Metal Construction Association (MCA) IPD Program Operator: UL Environment IPD Expiration: 8/27/2018	burden
Cradle to gate Transportation Distance: By truck: 663 km ind-of-Life Scope: 95% of aluminum recovered 5% of aluminum landfilled (inert waste) 100% of polyurethane landfilled (plastic waste) Module D Scope: All recovered aluminum is processed and credited as avoided CI Source: US: Metal composite material (MCM) panel MCA (2010) IPD Source: 13CA27321.101.1 IPD Designation Holder: Metal Construction Association (MCA) IPD Program Operator: UL Environment IPD Program Operator: UL Environment IPD Expiration: 8/27/2018 ick, generic Jsed in the following Revit families: X088A - 8° CMU - 2° Mineral Wool - Air Barrier - Brick X088A - 8° CMU - 2° Rigid - Air Barrier - Brick X088A - 8° CMU - 2° Rigid - Air Barrier - Brick X088A - 8° CMU - 2° Spray - Brick X0M6A - 60WB - 6° Stud - Sheathing - 2° Spray - BRICK	burden 5,602.6 kg 1,400.6 kg (50 yrs) 1,400.6 kg (50 yrs) 1,400.6 kg (50 yrs) 1,400.6 kg (50 yrs)
Cradle to gate Transportation Distance: By truck: 663 km ind-of-Life Scope: 95% of aluminum recovered 5% of aluminum landfilled (inert waste) 100% of polyurethane landfilled (plastic waste) Module D Scope: All recovered aluminum is processed and credited as avoided CI Source: US: Metal composite material (MCM) panel MCA (2010) IPD Source: 13CA27321.101.1 IPD Designation Holder: Metal Construction Association (MCA) IPD Program Operator: UL Environment IPD Expiration: 8/27/2018 Votk, generic Sed in the following Revit families: X08BA - 8" CMU - 2" Spray - Brick X08BA - 8" CMU - 2" Spray - Brick X0M6A - GWB - 6" Stud - Sheathing - 2" Spray - BRICK Jsed in the following Tally entries: Brick	burden 5,602.6 kg 1,400.6 kg (50 yrs) 1,400.6 kg (50 yrs) 1,400.6 kg (50 yrs) 1,400.6 kg (50 yrs)

tally

BRENT ES

Design option comparison

LCI Data (continued)

Life Cycle Inventory: 100% Fired brick

Product Scope: Cradle to gate excludes mortar anchors, ties, and metal accessories outside of scope (<1% mass)

Transportation Distance: By truck: 172 km

End-of-Life Scope: 55% Recycled into coarse aggregate 45% Landfilled (inert material)

Module D Scope: Avoided burden credit for coarse aggregate, includes grinding energy

LCI Source: DE: Stoneware tiles, unglazed (EN15804 A1-A3) ts (2017)

Concrete masonry unit (CMU), hollow-core

Used in the following Revit families: X0B8A - 8" CMU - 2" Mineral Wool - Air Barrier - Brick X0B8A - 8" CMU - 2" Rigid - Air Barrier - Brick X0B8A - 8" CMU - 2" Spray - ACM X0B8A - 8" CMU - 2" Spray - Brick X0B8A - 8" CMU - 2" Spray - TAKTL X0B8A - 8" CMU - 3.5 EPS EIFS

7,579.7 kg 1,284.7 kg (50 yrs) 1,156.2 kg (50 yrs)

661.5 kg

661.5 kg (50 yrs)

Used in the following Tally entries: Hollow-core CMU

Description Hollow-Core Concrete Masonry Unit (CMU), excludes grout and mortar

Life Cycle Inventory: 100% Concrete masonry units

Product Scope: Cradle to gate, excludes mortar Anchors, ties, and metal accessories outside of scope (<1% mass)

Transportation Distance:

By truck: 172 km

End-of-Life Scope: 55% Recycled into coarse aggregate 45% Landfilled (inert material)

Module D Scope: Avoided burden credit for coarse aggregate, includes grinding energy

LCI Source: DE: Concrete bricks (EN15804 A1-A3) ts (2017)

Curtain wall system, Kawneer, 1600 Wall System - EPD

Thermally broken aluminum curtain wall system by Kawneer INCLUSIVE of glazing units, appropriate for low-to-mid-rise applications, including the 1600, 1620, 1630, 2250, and 7500 curtainwall system lines. Includes mullions, glazing, and all necessary gaskets and sealants. The reference window unit size is 1.5m x 1.6m. EPD representative of conditions in North America.

Life Cycle Inventory:

For information and quantities, see EPD

Product Scope:

Transportation Distance

By truck: 663 km

End-of-Life Scope:

Module D Scope:

Credit given for the avoided burden associated with recovered material

17

Used in the following Revit families: Curtain Wall Placeholder Used in the following Tally entries: Curtainwall System (including glazing) Description:

Cradle to gate

95% recovery rate

5% landfill (inert)

	9/18/2020
LCI Source: EPD (US), Kawneer North America (2015)	
EPD Source: 47868332121.105.1	
EPD Designation Holder: Kawneer North America	
EPD Program Operator: UL Environment	
EPD Expiration: 11/16/2020	
Fiberglass mat gypsum sheathing board Used in the following Revit families:	354.0 kg
XUM6A - GWB - 6' Stud - Sheathing - 2' Spray - ACM XOM6A - GWB - 6'' Stud - Sheathing - 2'' Spray - BRICK XOM6A - GWB - 6'' Stud - Sheathing - 2'' Spray - TAKTL	118.0 kg (50 yrs) 118.0 kg (50 yrs) 118.0 kg (50 yrs)
Used in the following Tally entries: Fiberglass mat gypsum sheathing	
Description: Fiberglass treated gypsum sheathing product appropriate for u environments.	ise in high-moisture
Life Cycle Inventory: 92% Gypsum 8% Fiberglass mat	
Product Scope: Cradle to gate	
Transportation Distance: By truck: 172 km	
End-of-Life Scope: 100% Landfilled (inert waste)	
LCI Source: DE: Gypsum plaster board (Moisture resistant) (EN15804 A1-A3 US: Fiberglass Duct Board NAIMA (2007)	8) ts (2017)
Fluid applied elastomeric air barrier	61.8 kg
X0B8A - 8" CMU - 2" Mineral Wool - Air Barrier - Brick X0B8A - 8" CMU - 2" Rigid - Air Barrier - Brick	30.9 kg (40 yrs) 30.9 kg (40 yrs)
Used in the following Tally entries: Fluid applied elastomeric air barrier	
Description: Water-based asphalt emulsion with SBS polymers	
Life Cycle Inventory: 35% Naphtha 50% Bitumen 10% SBR	
5% Silica	
Cradle to gate for materials only, neglects manufacturing requi Transportation Distance:	rements
By truck: 172 km End-of-Life Scope: 100% (andfilled (clastic waste)	
LCI Source:	
US: Styrene-butadiene rubber (SBR) ts (2017) US: Naphtha at refinery ts (2014) US: Bitumen at refinery ts (2014) US: Silica sand (flour) ts (2017) US: Electricity grid mix ts (2014)	
	tally
	[uuy

Design option comparison

LCI Data (continued)

Fluoropolymer coating, metal stock Used in the following Revit families:	12.0 kg
X0B8A - 8" CMU - 2" Spray - ACM X0M6A - GWB - 6" Stud - Sheathing - 2" Spray - ACM	6.0 kg (30 yrs) 6.0 kg (30 yrs)
Used in the following Tally entries: Aluminum faced composite wall panel (ACM)	
Description: Standard fluoropolymer coating for metals. This entry is used as a pal MCA EPD for Roll Formed Steel Panels (EPD ID 13CA27321.101.1).	rt of the larger
Life Cycle Inventory: 100% Fluoropolymer coating	
Product Scope: Cradle to gate, including application	
Transportation Distance: N/A	
End-of-Life Scope: 100% Landfilled (inert waste)	
LCI Source: US: Coil coating MCA (2010) US: Electricity grid mix ts (2014) US: Thermal energy from natural gas ts (2014)	
Galvanized steel support	771.1 kg
X0B8A - 8" CMU - 2" Spray - TAKTL X0M6A - GWB - 6" Stud - Sheathing - 2" Spray - TAKTL	385.6 kg (50 yrs) 385.6 kg (50 yrs)
Used in the following Tally entries: Glass fiber reinforced concrete (GFRC) panel	
Description: Hot dipped galvanized steel profile, for use with cladding systems.	
Life Cycle Inventory: 100% Steel, hot dip galvanized	
Product Scope: Cradle to gate for deck only.	
Transportation Distance: By truck: 431 km	
End-of-Life Scope: 98% Recovered 2% Landfilled (inert material)	
Module D Scope: Product has 44% scrap input while remainder is processed and credit burden	ed as avoided
LCI Source: RNA: Steel hot dip galvanized worldsteel (2007) GLO: Steel sheet stamping and bending (5% loss) ts (2014) US: Electricity grid mix ts (2014) US: Lubricants at refinery ts (2014) GLO: Compressed air 7 bar (medium power consumption) ts (2014) US: Metal roll forming M CA (2010) GLO: Value of scrap worldsteel (2014)	
GFRC	1,356.8 kg
Used in the following Revit families: X0B8A - 8" CMU - 2" Spray - TAKTL X0M6A - GWB - 6" Stud - Sheathing - 2" Spray - TAKTL	678.4 kg (50 yrs) 678.4 kg (50 yrs)
Used in the following Tally entries: Glass fiber reinforced concrete (GFRC) panel	· · · · · · · · · · · · · · · · · ·
Description: Glass fiber reinforced concrete (GFRC), applied manually. Appropriate facade panels and precast elements.	for exterior
Life Cycle Inventory: 12% Cement 5% Glass fibers 39% Gravel 38% Sand	

18

7% Water

9/18/2020

Product Scope: Cradle to gate, excludes mortar	
Transportation Distance:	
By truck: 24 km End-of-Life Scope: 55% Recycled into coarse aggregate	
45% Landfilled (inert material) Module D Scope:	
Avoided burden credit for coarse aggregate, includes grinding energ LCI Source:	JY
US: Portland cement PCA/ts (2014) DE: Gravel (Grain size 2/32) (EN15804 A1-A3) ts (2017) US: Tap water from groundwater ts (2017) US: Silica sand (Excavation and processing) ts (2017) US: Glass fibres ts (2017)	
slazing, double, insulated (air)	358.9 kg
Used in the following Revit families: System Panel	358.9 kg (40 yrs)
Used in the following Tally entries: Glazing, double pane IGU	
Description: Glazing, double, insulated (air filled), 1/8" (4 mm) float glass clear, in and spacers	clusive of sealant,
Life Cycle Inventory: Double-pane glass IGU (Air filled, with spacer and sealant)	
Product Scope: Cradle to gate	
Transportation Distance: By truck: 940 km	
End-of-Life Scope: 100% Landfilled (inert waste)	
LCI Source: DE: Double glazing unit ts (2017), modified to exclude coating and a	rgon
ime mortar (Mortar type K)	1,541.4 kg
Used in the following Revit families: X0B8A - 8° CMU - 2° Mineral Wool - Air Barrier - Brick X0B8A - 8° CMU - 2° Rigid - Air Barrier - Brick X0B8A - 8° CMU - 2° Spray - ACM X0B8A - 8° CMU - 2° Spray - Brick X0B8A - 8° CMU - 2° Spray - TAKTL X0B8A - 8° CMU - 3.5 EPS EIFS X0M6A - GWB - 6° Stud - Sheathing - 2° Spray - BRICK	319.2 kg (50 yrs) 319.2 kg (50 yrs) 139.2 kg (50 yrs) 319.2 kg (50 yrs) 139.2 kg (50 yrs) 125.3 kg (50 yrs) 180.0 kg (50 yrs)
Used in the following Tally entries: Brick	
Description:	
Life Cycle Inventory: 20-65% Sand 40-70% Limestone 5-15% Hydrated lime 7-15% Cement	
Product Scope: Cradle to gate	
Transportation Distance: By truck: 172 km	
End-of-Life Scope: 55% Recycled into coarse aggregate 45% Landfilled (inert material)	
Module D Scope: Avoided burden credit for coarse aggregate, includes grinding energy	у
LCI Source: DE: Light plaster (lime-cement) ts (2017)	

tally

BRENT ES

Design option comparison

LCI Data (continued)

Mineral wool, low density, NAIMA - EPD Used in the following Revit families: X0B8A - 8" CMU - 2" Mineral Wool - Air Barrier - Brick 28.3 28.3 kg (50 Used in the following Tally entries: Mineral wool, board, generic Description: Rockwool (mineral wool) board light density. Industry-wide EPD from the North America Insulation Manufacturers Association. EPD representative of conditions in North America. Life Cycle Inventory: For information and quantities, see EPD Product Scope: Cradle to gate Transportation Distance: By truck: 172 km End-of-Life Scope: 100% Landfilled (inert waste) LCI Source: US: Rock board insulation (light density) NAIMA (2007) EPD Source: 4786060412.102.1 EPD Designation Holder: North American Insulation Manufacturer's Association (NAIMA) EPD Program Operator: UL Environment EPD Expiration: 11/8/2018 Paint, interior acrylic latex Used in the following Revit families: X0B8A - 8° CMU - 2° Mineral Wool - Air Barrier - Brick X0B8A - 8° CMU - 2° Rigid - Air Barrier - Brick 193.8 21.8 kg (7 21.8 kg (7 AUBAA - 8 CMU - 2 Kigia - AIR Barner - Brick XOBBA - 8 CMU - 2" Spray - ACM XOBBA - 8" CMU - 2" Spray - Brick XOBBA - 8" CMU - 2" Spray - TAKTL XOBBA - 8" CMU - 3.5 EPS EIFS XOM6A - 6WB - 6" Stud - Sheathing - 2" Spray - ACM YOM6A - (WB - 6" Stud - Sheathing - 2" Spray - ACM 21.8 kg (7 21.8 kg (7 21.8 kg (7 19.6 kg (7 21.8 kg (7 X0M6A - GWB - 6" Stud - Sheathing - 2" Spray - BRICK X0M6A - GWB - 6" Stud - Sheathing - 2" Spray - TAKTL 21.8 kg (7 21.8 kg (7 Used in the following Tally entries: Paint Wall board, gypsum Description: Acrylic-based paint for interior applications Life Cycle Inventory: 21% Binding agent 35% Pigments and fillers 42% Water 2% Organic solvents Product Scope: Cradle to gate, including emissions during application Transportation Distance: By truck: 642 km End-of-Life Scope: 100% to landfill (plastic waste) LCI Source:

DE: Application paint emulsion (building, interior, white, wear resistant) ts (2017)

PIR rigid foam insulation, wall, R=14.6, PIMA - EPD Used in the following Revit families: X0B8A - 8" CMU - 2" Rigid - Air Barrier - Brick

Used in the following Tally entries: Polyisocyanurate (PIR), board Description:

19

MOYA DESIGN PARTNERS + hord coplan macht

```
9/18/2020
```

J	R-value of 14.6, 2.25" thickness (57.2 mm). Industry-wide EPD	from the
8.3 kg (50 yrs)	Polyisocyanurate Insulation Manufacturers Association.	
	Life Cycle Inventory: For information and quantities, see EPD	
	Product Scope: Cradle to gate	
acturers	Transportation Distance: By truck: 250 km	
	End-of-Life Scope: 100% Landfilled (plastic waste)	
	LCI Source: RNA: Polyisocyanurate rigid foam board wall insulation, R=14.	6 (A1-A3) ts-EPD (2013)
	EPD Source: EPD10042	
	EPD Designation Holder: Polyisocyanurate Insulation Manufacturers Association	
	EPD Program Operator: NSF International	
	EPD Expiration: 2/6/2020	
	Spray polyurethane foam, closed cell (HFO blowing agent), SF	PFA - EPD 113.3 kg
	Used in the following Revit families: X0B8A - 8" CMU - 2" Spray - ACM	18.9 kg (50 vrs
	X0B8A - 8" CMU - 2" Spray - Brick	18.9 kg (50 yrs
	X0B8A - 8" CMU - 2" Spray - TAKTL	18.9 kg (50 yrs
	X0M6A - GWB - 6" Stud - Sheathing - 2" Spray - ACM	18.9 kg (50 yrs
193.8 kg	X0M6A - GWB - 6" Stud - Sheathing - 2" Spray - BRICK X0M6A - GWB - 6" Stud - Sheathing - 2" Spray - TAKTL	18.9 kg (50 yrs 18.9 kg (50 yrs
1.8 kg (7 yrs)	Used in the following Tally entries: Closed cell, polyurethane foam, spray-applied	
21.8 kg (7 yrs) 21.8 kg (7 yrs) 21.8 kg (7 yrs) 21.8 kg (7 yrs) 19.6 kg (7 yrs) 21.8 kg (7 yrs)	Description: Two-component polyurethane mixture insulation spray applie Closed-cell, or medium density foam, (ccSPF) provides a water air-sealing, water vapor control and delivers added structural j building envelone. HFO blowing agent is used. R Value 62 (ff	d at installation site. resistant insulation, performance to the ²hr²F/Btu)/in
21.8 kg (7 yrs) 21.8 kg (7 yrs)	Life Cycle Inventory: For information and quantities, see EPD	
	Product Scope: Cradle to gate, includes emission of blowing agent during use agent)	(24% of total blowing
	Transportation Distance: By truck: 1683 km	
	End-of-Life Scope: 100% landfilled (plastic), including emission of blowing agent	(16% of total blowing
	50% of blowing agent remains in product after disposal)	
	Module D Scope: Energy recovered from landfilling of packaging waste	
	LCI Source: FPD (IIS) SPEA (2018)	
	EPD Source: ASTM-FPD085	
(0017)	EPD Designation Holder: Spray Polyurethane Foam Alliance	
(2017)	EPD Program Operator: ASTM International	
13.8 kg	EPD Evolution:	
3.8 kg (50 yrs)	10/29/2023	

Design option comparison

LCI Data (continued)

Steel, reinforcing rod Used in the following Revit families: X088A - 8" CMU - 2" Mineral Wool - Air Barrier - Brick 209.3 35.5 kg (50 35.5 kg (50 X0B8A - 8" CMU - 2" Rigid - Air Barrier - Brick X088A - 8" CMU - 2" Spray - ACM X088A - 8" CMU - 2" Spray - Brick X088A - 8" CMU - 2" Spray - Brick X088A - 8" CMU - 2" Spray - TAKTL X088A - 8" CMU - 3.5 EPS EIFS 35.5 kg (50 35.5 kg (50 35.5 kg (50 31.9 kg (50 Used in the following Tally entries: Hollow-core CMU Description: Common unfinished tempered steel rod suitable for structural reinforcement (rebar Life Cycle Inventory: 100% Steel rebar Product Scope: Cradle to gate Transportation Distance By truck: 431 km End-of-Life Scope: 70% Recovered 30% Landfilled (inert material) Module D Scope: Product has a 16.4% scrap input while remainder is processed and credited as avoid burden. LCI Source: GLO: Steel rebar worldsteel (2014) Stucco, synthetic Used in the following Revit families: X0B8A - 8" CMU - 3.5 EPS EIFS 11.4 11.4 kg (30 Used in the following Tally entries: Exterior insulation and finish system (EIFS) Description: Acrylic latex stucco layer, typically applied over a PVC lath. Base stucco layer with a default thickness of 3/8" (9.5 mm). Life Cycle Inventory: 90% Acrylic resin 10% Quartz sand 2.2% NMVOC emissions during application Product Scope: Cradle to gate, including emissions during application Transportation Distance: By truck: 642 km End-of-Life Scope: 97.8% Solids landfilled (plastic waste) LCI Source: DE: Acrylate resin (solvent systems) PE (2015) US: Silica sand (excavation and processing) ts (2017) Un-coated cold-formed steel framing products, ClarkDietrich - EPD 85.2 Used in the following Revit families: X0M6A - GWB - 6" Stud - Sheathing - 2" Spray - ACM 28.4 kg (50 X0M6A - GWB - 6" Stud - Sheathing - 2" Spray - BRICK X0M6A - GWB - 6" Stud - Sheathing - 2" Spray - TAKTL 28.4 kg (50 28.4 kg (50 Used in the following Tally entries: Steel, C-stud metal framing Description: Bare steel framing products by ClarkDietrich. Thicknesses in the range of 0.0120 incl to 0.1180 inches. Appropriate for use as interior framing, interior finishing trims and accessories, exterior framing, floor framing, clips/connectors, expanded metal lath, plaster trim and accessories. EPD representative of conditions in the US. Life Cycle Inventory: For information and quantities, see EPD Product Scope: . Cradle-to-gate

20

9/18/2020

tally

3 kg	Transportation Distance: By truck: 431 km	
yrs) yrs) yrs)	End-of-Life Scope: 98% Recovered 2% Landfilled (inert material)	
yrs) yrs) yrs)	Module D Scope: Credit given for the avoided burden associated with recovered	material
	LCI Source: EPD (US), ClarkDietrich Building Systems (2016)	
r)	EPD Source: EPD10056	
	EPD Designation Holder: ClarkDietrich Building Systems	
	EPD Program Operator: NSF International	
	EPD Expiration: 6/30/2020	
	Wall board, gypsum, moisture- and mold-resistant Used in the following Revit families: X0M6A - GWB - 6" Stud - Sheathing - 2" Spray - ACM	669.0 kg
ded	X0M6A - GWB - 6" Stud - Sheathing - 2" Spray - BRICK X0M6A - GWB - 6" Stud - Sheathing - 2" Spray - TAKTL	223.0 kg (30 yrs) 223.0 kg (30 yrs)
	Used in the following Tally entries: Wall board, gypsum	
4 kg	Description: Moisture- and mold-resistant gypsum board	
yrs)	Life Cycle Inventory: 100% Moisture-resistant gypsum wallboard (Gypsum, Boric aci lignin sulfonate, Glass fibres, Silane, Polyglucose, Perlite, Paper	id, Cement, Sodium ; Casein glue)
	Product Scope: Cradle to gate	
	Transportation Distance: By truck: 172 km	
	End-of-Life Scope: 100% Landfilled (inert waste)	
	LCI Source: DE:Gypsum plaster board (Moisture resistant) (EN15804 A1-A3	i) ts (2017)
	XPS insulation, Foamular 250, Owens Corning - EPD	13.2 kg
	Used in the following Revit families: X0B8A - 8" CMU - 3.5 EPS EIFS	13.2 kg (50 yrs)
	Used in the following Tally entries: Exterior insulation and finish system (EIFS)	
2 kg	Description: FOAMULAR 250 XPS (polystyrene) insulation board, HFC foam representative of US manufacturing condition. FOAMULAR insu with a variety of R-values and compressive strengths. This entr compressive strength of 25 psi. If the intended R-value is know menu to designate a specific board thickness.	ing agent. EPD ulation board is available y is based on a vn, use the drop-down
yrs) yrs) yrs)	Note: This temporary entry is sourced directly from third-party replaces a Tally entry that is undergoing a quality assurance re developed using data from ecoinvent and modeled in SimaProc	verified EPD data and view. This entry but adheres to
	Life Cycle Inventory: For information and quantities, see EPD.	
thes d	Product Scope: Cradle to gate. Note: Product stage expanded to include blowing agent emiss and installation, and diffusion from product over service life (8 make a significant contribution to GWP they have been include	ions during distribution 1). As these impacts ed in the product stage.
	Transportation Distance: By truck: 1190 km	
	End-of-Life Scope:	

BRENT ES

Design option comparison

LCI Data (continued)

LCI Source: US: Extruded polystyrene (XPS) insulation board, FOAMULAR - Owens Corning EPD (2018), modeled with Simapro 8, source for secondary data is ecoinvent 3.4

EPD Source: 4788721182.101.1

EPD Designation Holder: Owens Corning

EPD Program Operator: UL Environment

EPD Expiration: 1/1/2024

MOYA DESIGN PARTNERS + hord coplan macht

9/18/2020

Results per Life Cycle Stage

Legend

► Net value (impacts + credits)

Design Options Option 1 - CMU - EIFS Option 2 - CMU - Mineral Wool - Brick Option 3 - CMU - Polyiso - Brick Option 4 - CMU - Spray - ACM Panel Option 5 - CMU - Spray - TAKTL Option 6 - CMU - Sprayfoam - Brick (primary) Option 7 - Curtain Wall Option 8 - Storefront

Option 9 - Stud - Spray - ACM Option 10 - Stud - Spray - Brick Option 11 - Stud - Spray - TAKTL

Life Cycle Stages Product [A1-A3] Transportation [A4] Maintenance and Replacement [B2-B5] End of Life [C2-C4] Module D [D]

NZE Strategies Estimate

Brent Elementary School District of Columbia Public Schools

NetZero Study Estimates

Moya Design Partners / Hord Coplan Macht 555 12th Street NW, Suite 620 Washington, DC 20004

Washington, DC

Hanscomb Consulting, Inc. 225 Reinekers Lane, Suite 200 Alexandria, VA 22314

www.HanscombConsult.com

September 21, 2020

Brent Elementary School District of Columbia Public Schools	Hanscomb Consulting
letZero Study	21-Sep-20
Summary of Estimates Item Description	Total
stimate - Iteration #1 Baseline - 40% Window/Wall ratio	\$5,548,978
stimate - Iteration #2 35% Window/Wall ratio in lieu of Baseline	(\$37,493)
stimate - Iteration #3 35% Window/Wall ratio; North 60% in lieu of Baseline	\$0
stimate - Iteration #4 35% Window/Wall ratio; North 70% in lieu of Baseline	\$14,997
stimate - Iteration #5 HVAC - Watercooled VRF System in lieu of Baseline VAV System	\$5,865,695

Brent Elementary School District of Columbia Public Schools NetZero Study

Estimate - Iteration #1 Item Description

Baseline - 40% Window/Wall ratio

Windows - 40%

Walls - 60%

Markups (as per Concept Estimate dated 3/9/2019)

SUMMARY OF ESTIMATES

2 of 11

72

Quantity	Unit	Rate	Total
17 070	SE	00.08	\$1 366 310
17,077		\$60.00	\$1,300,310
25,618	SF	\$70.00	\$1,793,282
			\$3,159,593
		75.62%	\$2,389,385
			\$5,548,978

	- 2	Quantity	Unit	Rate	Total
% Window/Wall ratio					
DEDUCT BASELINE: Windows - 40%		17,079	SF	\$80.00	\$1,366,310
Walls - 60%	_	25,618	SF	\$70.00	\$1,793,282
	Sub-Total				(\$3,159,593)
<u>ADD:</u> Windows - 35%		14,944	SF	\$80.00	\$1,195,522
Walls - 65%	_	27,753	SF	\$70.00	\$1,942,723
	Sub-Total				\$3,138,244
o-Total					(\$21,349)
Markups (as per Concept Estimate	e dated 3/9/2019)			75.62%	(\$16,144)
al					(\$37,493)

ESTIMATE #2

4 of 11

Brent Elementary School
District of Columbia Public Schools
NetZero Study

Estimate - Iteration #3 Item Description

35% Window/Wall ratio; North 60%

DEDUCT BASELINE:

Windows - 40%

Walls - 60%

Sub-Total

<u>ADD:</u> Windows S, E & W - 35% Walls S, E & W - 65%

Windows, North - 60% Walls, N - 40%

Sub-Total

Sub-Total

Markups (as per Concept Estimate dated 3/9/2019)

MOYA DESIGN PARTNERS + hord coplan macht

		\$	Hanscomb
Quantity	Unit	Rate	Total
17,079	SF	\$80.00	\$1,366,310
25,618	SF	\$70.00	\$1,793,282
			(\$3,159,593)
11,955 22,203	SF SF	\$80.00 \$70.00	\$956,417 \$1,554,178
5,124 3,416	SF SF	\$80.00 \$70.00	\$409,893 \$239,104
			\$3,159,593
			\$0
		75.62%	\$0

\$0

STIMATE - ITERATION # 4	·	Quantity	Unit	Rate	Total
% Window/Wall ratio; North 70%					
DEDUCT BASELINE:					
Windows - 40%		17,079	SF	\$80.00	\$1,366,310
Walls - 60%	_	25,618	SF	\$70.00	\$1,793,282
	Sub-Total				(\$3,159,593)
ADD:					
Windows S, E & W - 35%		11,955	SF	\$80.00	\$956,417
Walls S, E & W - 65%		22,203	SF	\$70.00	\$1,554,178
Windows North - 70%		5 978	SE	\$80.00	\$478 209
Walls, N - 30%	-	2,562	SF	\$70.00	\$179,328
	Sub-Total				\$3,168,132

ESTIMATE #4

6 of 11

Brent Elementary School District of Columbia Public Schools NetZero Study

Estimate - Iteration #5 Item Description

HVAC - Watercooled VRF System

DEDUCT BASELINE:

Packaged VAV System with Reheat

Phase 1 D3010 Energy Supply

Temporary pacakged rooftop unit - 30 tons

D3040 Distribution Systems

Ductwork smacna standards Registers, grilles, & diffusers Misc. volume dampers, fire dampers, motorized dampers. Fiberglass duct insulation

D3060 Controls & Instrumentation Stand alone thermostat for rooftop unit

D3080 Systems Testing & Balancing Certified air balance Start up, test, & check

Permit & inspections

D3090 Other HVAC Systems & Equipment Crane to rig rooftop unit in place

Phase 2

D3010 Energy Supply 100% dedicated outside air unit with energy recovery wheel (assume 100 cfm of outside air per 600 square feet of space)

D3020 Heat Generating Systems

4'x10' Solar thermal collection panels (assume quanity) Hot water storage tank, heat exchanger, expansion tank, controllers, valves & specailties. Radiant floor heating system using pex piping with crimped joints (includes; zone control valves, zone thermostats, zone manifolds/header, flooring membrane, & ciruclating pump)

Heating water piping (sch. 40 black steel) Fiberglass pipe insulation Glycol fill 40/60 mixture for solar thermal system

MOYA DESIGN PARTNERS + hord coplan macht

	Quantity	Unit	Rate	Total
	1	EA	\$45,000.00	\$45,000
	12,142	GSF	\$5.25	\$63,746
	12,142	GSF	\$2.00	\$24,284
	1	LS	\$2.500.00	\$2.500
	12,142	GSF	\$3.00	\$36,426
	1	EA	\$1,000.00	\$1,000
	1	LS	\$3,000.00	\$3,000
	16	HRS	\$125.00	\$2,000
	1	LS	\$6,000.00	\$6,000
	1	EA	\$10,500.00	\$10,500
	14,500	CFM	\$8.00	\$116,000
	750		¢0.050.00	¢1 /07 F00
	/50	ЕA	\$2,250.00	\$1,687,500
	1	LS	\$25,000.00	\$25,000
	80 330	GSF	¢10 F0	\$1 116 K75
	89,330	GSF	\$3.15	\$281,390
	89,330	GSF	\$1.75	\$156,328
	1	EA	\$5,000.00	\$5,000

ESTIMATE #5

7 of 11

ict of Columbia Public Schools			🔶 н	ansco _{Cons}
ero Study				
mate - Iteration #5				
em Description	Quantity	Unit	Rate	Total
D3030 Cooling Generating Systems (Packaged				
VAV with reheat)	2		* 275 000 00	*••
VAV Boxos with roboat coils	3 110	EA	\$275,000.00 \$2,500.00	\$82
Cooling tower with centrifugal pumps (allowance	119	LA	\$2,300.00	\$Z9
assume 300 tons)	1	FΑ	\$150,000,00	\$15
Condenser water piping to absorption chiller	·	273	\$100,000.00	ψ10
(allowance, assume sch. 40 black steel grooved with				
mechanical fittings)	200	LF	\$200.00	\$4
Absorbtion chiller (assume 300 tons, allowance)	1	EA	\$450,000.00	\$45
Centrifugal pump for chilled water system with VFD	1	EA	\$25,000.00	\$2
Centrifugal pump for condenser water system with VFD	1	EA	\$25,000.00	\$2
Cold water storage tank (allowance, assume 2,000 gal		F •	***	^
OF IESS)	1	EA	\$35,000.00	\$3
Chilled water piping (sch. 40 black steel)	00 220	EA	\$60,000.00 ¢2.15	0¢ 00¢
Fiberglass insulation for chilled water piping	89,330	GSE	\$3.15	\$20 \$15
Fan coil units with valve kits, heating & chilled water	07,000	001	\$1.70	ψ10
coils (assume 1,400 cfm per fcu)	60	EA	\$3,500.00	\$21
D3040 Distribution Systems				
Ductwork smacna standards	89,330	GSF	\$12.00	\$1,07
Registers, grilles, & diffusers	89,330	GSF	\$3.00	\$26
Misc. volume dampers, fire dampers, motorized				
dampers.	1	LS	\$75,000.00	\$7
Fiberglass duct insulation	89,330	GSF	\$3.00	\$26
Kitchen HVAC system (make up air unit, grease				
dish washer hood & fan)	1	15	\$67,200,00	¢ć
	I	LS	\$07,200.00	Φ Ο
D3060 Controls & Instrumentation				
Building automation system (includes; software, start	00.000	005	¢7.50	<i>•</i> () (
up, control devices & laptop)	89,330	GSF	\$7.50	\$66
D3080 Systems Testing & Balancing				
Certified air & water balance	1	LS	\$25,000.00	\$2
Start up, test, & check	180	HRS	\$125.00	\$2
Commissioning assistance	180	HRS	\$125.00	\$2
D3090 Other HVAC Systems & Equipment				
Crane for rigging HVAC equipment	1	EA	\$50,000.00	\$5
Permit & inspections	1	EA	\$65,000.00	\$6
Demolish (1) rooftop unit from phase-1 (includes				
			¢11 700 00	¢ 1

Brent Elementary School District of Columbia Public Schools NetZero Study Estimate - Iteration #5 Item Description

Watercooled VRF System-Geothermal System

Phase 1 <u>D3010 Energy Supply</u> Temporary pacakged rooftop unit - 30 tons

D3040 Distribution Systems

Ductwork smacna standards Registers, grilles, & diffusers Misc. volume dampers, fire dampers, motorized dampers. Fiberglass duct insulation

D3060 Controls & Instrumentation

Stand alone thermostat for rooftop unit

D3080 Systems Testing & Balancing

Certified air balance Start up, test, & check Permit & inspections

D3090 Other HVAC Systems & Equipment Crane to rig rooftop unit in place

Phase 2

D3010 Energy Supply

100% dedicated outside air unit with energy recovery wheel (assume 100 cfm of outside air per 600 square feet of space)

D3020 Heat Generating Systems

4'x10' Solar thermal collection panels (assume quanity) Hot water storage tank, heat exchanger, expansion tank, controllers, valves & specailties. Radiant floor heating system using pex piping with crimped joints (includes: zone control valves, zone thermostats, zone manifolds/header, flooring membrane, & ciruclating pump) Heating water piping (sch. 40 black steel)

Fiberglass pipe insulation Glycol fill 40/60 mixture for solar thermal system

D3030 Cooling Generating Systems

Watercooled 3-pipe heat recovery vrf system ACR clean and capped refrigerant piping Closed cell armaflex refrigerant pipe insulation Nitrogen tanks for brazing refrigerant piping R-410 refrigerant to charge vrf system

ESTIMATE #5

8 of 11

78

Quantity	Unit	Rate	Total
1	EA	\$45,000.00	\$45,000
12,142 12,142	GSF GSF	\$5.25 \$2.00	\$63,746 \$24,284
1 12,142	LS GSF	\$2,500.00 \$3.00	\$2,500 \$36,426
1	EA	\$1,000.00	\$1,000
1 16 1	LS HRS LS	\$3,000.00 \$125.00 \$6,000.00	\$3,000 \$2,000 \$6,000
1	EA	\$10,500.00	\$10,500
14,500	CFM	\$8.00	\$116,000
750	EA	\$2,250.00	\$1,687,500
1	LS	\$25,000.00	\$25,000
89,330 89,330 89,330 1	GSF GSF GSF EA	\$12.50 \$3.15 \$1.75 \$5,000.00	\$1,116,625 \$281,390 \$156,328 \$5,000
115 89,330 89,330 1 1	TONS GSF GSF LS LS	\$5,500.00 \$7.25 \$2.45 \$7,500.00 \$10,000.00	\$632,500 \$647,643 \$218,859 \$7,500 \$10,000
TE #5			9 of

Brent Elementary School District of Columbia Public Schools

NetZero Study

E

em Description	Quantity	Unit	Rate	Total
Geothermal header/manifold	1	LS	\$10,000,00	\$10.000
Geothermal centrifugal pump with VED	1	FA	\$15,000,00	\$15,000
Cooling tower with centrifugal pumps (allowance,		273	\$10,000100	¢.0,00
assume 200 tons)	1	EA	\$75,000.00	\$75,00
Condenser water piping to absorption chiller (allowance, assume sch. 40 black steel grooved with				
mechanical fittings)	200	LE	\$125.00	\$25,000
Absorption chiller (assume 200 tons, allowance)	1	FA	\$350,000,00	\$350.00
Centrifugal pump for chilled water system with VED	1	FA	\$15,000,00	\$15.00
Centrifugal pump for condenser water system with VFD		5.	\$15,000.00	\$15.00
Cold water storage teak (allowanes, seeume 2,000 col	1	ΕA	\$15,000.00	\$15,00
cold water storage tank (allowance, assume 2,000 gal		E A	ADE 000 00	* 25 00
ULIESS	1	EA	\$35,000.00	\$35,00
chilled water piping (seb. 40 black steel)	00.000	LA	\$6U,UUU.UU	\$60,00
Elboralass insulation for chilled water piping	84,330	GOL COL	\$3.15 ¢1 7⊑	\$281,39 \$154 00
Fan coil units with valve kits, heating & chilled water	89,330	GSF	\$1.75	\$150,32
coils (assume 1,400 cfm per fcu)	60	EA	\$3,500.00	\$210,00
Geothermal wells includes backfill (70 wells)	35,000	VLF	\$45.00	\$1,575,00
Verticle HDPE geothermal piping (fusion weld) Geothermal headers (zone control valves in HVAC	70,000	LF	\$34.75	\$2,432,50
scope)	1	LS	\$20,000.00	\$20,000
D3040 Distribution Systems				
Ductwork smacna standards	89,330	GSF	\$5.25	\$468,983
Registers, grilles, & diffusers	89,330	GSF	\$2.00	\$178,66
Misc. volume dampers, fire dampers, motorized	1	LS	\$30,000.00	\$30,000
Fiberglass duct insulation	89,330	GSF	\$3.00	\$267,99
Kitchen HVAC system (make up air unit, grease exhaust fan, grease exhaust duct, dish washer duct,				
dish washer hood & fan)	1	LS	\$67,200.00	\$67,20
D3060 Controls & Instrumentation				
Building automation system (includes; software, start				
up, control devices & laptop)	89,330	GSF	\$6.00	\$535,980
D3080 Systems Testing & Balancing				
Certified air & water balance	1	LS	\$25,000.00	\$25,000
Start up, test, & check	180	HRS	\$125.00	\$22,500
Commissioning assistance	180	HRS	\$125.00	\$22,500
D3090 Other HVAC Systems & Equipment				
Crane for rigging HVAC equipment	1	EA	\$25,000.00	\$25,000
Permit & inspections	1	EA	\$65,000.00	\$65,000

ESTIMATE #5

10 of 11

Brent Elementary School District of Columbia Public Schools NetZero Study

Estimate - Iteration #5 Item Description

Demolish (1) rooftop unit from phase-1 (includes crane)

Sub-Tot

Sub-Total

Markups (as per Concept Estimate dated 3/9/2019)

			◆ ¹	Hanscomb Consulting
	Quantity	Unit	Rate	Total
	1	EA	\$11,700.00	\$11,700
tal				\$12,094,528
				\$3,339,932
			75.62%	\$2,525,763
				\$5,865,695

Outputs of Energy Modeling

Option 1

REPO	RT- BEPS	Building	Energy Pe	rformance	9					WE	ATHER FIL	E- WASHIN	IGTON, DC	
		LIGHTS	TASK LIGHTS	MISC EQUIP	SPACE HEATING	SPACE COOLING	HEAT REJECT	PUMPS & AUX	VENT FANS	REFRIG DISPLAY	HT PUMP SUPPLEM	DOMEST HOT WTR	EXT USAGE	TOTAL
EM1	ELECTRIC	ITY												
1	MBTU	732.0	0.0	387.0	165.8	175.0	0.0	367.4	264.1	0.0	0.0	0.0	211.7	2303
FM1	NATURAL-	GAS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	212.0	0.0	212.
1	MBTU	732.0	0.0	387.0	165.8	175.0	0.0	367.4	264.1	0.0	0.0	212.0	211.7	2515
		TOT. TOT.	AL SITE E AL SOURCE	NERGY	2515.08 7121.24	MBTU MBTU	28.9 KBT 81.9 KBT	U/SQFT-YR U/SQFT-YR	GROSS-AR	EA 28 EA 81	.9 KBTU/S	QFT-YR NE QFT-YR NE	T-AREA T-AREA	
		PER	CENT OF H CENT OF H	OURS ANY	SYSTEM ZO PLANT LOA	DNE OUTSID	E OF THRC	TTLING RA	NGE = 0. = 0.	00				
		HOU	RS ANY ZO	NE BELOW	HEATING 1	HROTTLING	RANGE		=	0				
		NOT	E. ENERG	V TO ADDO	DETTONED F	OURLY TO	ALL END-I	SE CATEGO	RTES					

JTILITY-RATE	RESOURCE	METERS	MET EN UNIT	ERED ERGY S/YR	TOTAL CHARGE (\$)	VIRTUAL RATE (\$/UNIT)	RATE USED ALL YEAR?
Custom Elec Rate	ELECTRICITY	EM1	674802.	KWH	81786.	0.1212	YES
Custom Gas Rate	NATURAL-GAS	FM1	2120.	THERM	2417.	1.1400	YES
					84203.		
		E	NERGY COST/GROSS	BLDG AREA:	0.97		
			ENERGY COST/NET	BLDG AREA:	0.97		

Option 2

Brent ES - Option-2-Hybrid GSHP

REPORT- BEPS Building Energy Performance

		LIGHTS	TASK LIGHTS	MISC EQUIP	SPACE HEATING	SPACE COOLING	HEAT REJECT	PUMPS & AUX	VENT FANS	REFRIG DISPLAY	HT PUMP SUPPLEM	DOMEST HOT WTR	EXT USAGE	TOTAL
EM1 E MB	LECTRIC: TU	1TY 732.0	0.0	387.0	166.2	181.2	0.0	327.7	235.4	0.0	0.0	0.0	211.7	2241.2
FM1 N	ATURAL-	GAS												
MB	BTU	0.0	0.0	0.0	15.6	0.0	0.0	0.0	0.0	0.0	0.0	212.0	0.0	227.6
MB	BTU	732.0	0.0	387.0	181.8	181.2	0.0	327.7	235.4	0.0	0.0	212.0	211.7	2468.8
		TO	TAL SITE E	NERGY	2468.77	MBTU	28.4 KBT	U/SQFT-YR	GROSS-ARE	A 28	.4 KBTU/S	QFT-YR NE	T-AREA	
		TO	TAL SOURCE	ENERGY	6951.15	MBTU	79.9 KBT	U/SQFT-YR	GROSS-ARE	A 79	.9 KBTU/S	QFT-YR NE	T-AREA	
		PE	RCENT OF H	IOURS ANY	SYSTEM ZC	NE OUTSIE	E OF THRO	TTLING RAN	IGE = 0.7	5				
		PEI	RCENT OF H	NE ABOVE	PLANT LOA	D NOT SAT	ISFIED RANGE		= 0.0	0				
		HO	JRS ANY ZO	NE BELOW	HEATING 1	HROTTLING	RANGE		= 2	1				
		NO	FF. ENERG	V TO ADDO	משתראשה ש		ALL END-II	SE CATECOR	TRC					
Brent	ES - Opt	tion-2-H	ybrid GSHP	•					DOE-2	.3-50h	9/30/20	20 14:	39:18 BE	LRUN 1
REPORT	- ES-D I	Energy C	ost Summar	v						WR	ATHER FIT	E- WASHTN	GTON. DC	
											momat			
								FIE	ENERGY		CHARGE	VIRIOA	E RATE	USED
UTILIT	Y-RATE			RESOU	JRCE	METE	RS	UNI	TS/YR		(\$)	(\$/UNIT) ALL Y	EAR?
Custom	n Elec Ra	ate		ELECT	TRICITY	EM1		656668	B. KWH		79588.	0.121	2 УБ	s
a											0504		o	
custom	i Gas Rat	ce		NATUI	KAL-GAS	FM1		2276	. THERM		2594.	1.140	U YE	5
											82183.			
							ENERGY	COST/GROS	SS BLDG AR	EA:	0.94			
							ENER	GY COST/NE	T BLDG AR	EA:	0.94			

		DOE-	2.3-50h	9/30/20	20 14:	39:18 BD	LRUN 1
_			WE	ATHER FIL	E- WASHIN	GTON, DC	
	PUMPS & AUX	VENT FANS	REFRIG DISPLAY	HT PUMP SUPPLEM	DOMEST HOT WTR	EXT USAGE	TOTAL
)	327.7	235.4	0.0	0.0	0.0	211.7	2241.2
)	0.0	0.0	0.0	0.0	212.0	0.0	227.6
)	327.7	235.4	0.0	0.0	212.0	211.7	2468.8
эт эт 20	U/SQFT-YR U/SQFT-YR TTLING RAI	GROSS-AR GROSS-AR NGE = 0. = 0. = = ETES.	REA 28 REA 79 .75 .00 0 21	.4 KBTU/S 0.9 KBTU/S	QFT-YR NE QFT-YR NE	T-AREA T-AREA	
•••	SE CATEGO	KIES.					

Option 3

EPORT- BEH	PS Building	Energy Pe	rformance	• 					WE	ATHER FIL	E- WASHIN	GTON, DC	
	LIGHTS	TASK LIGHTS	MISC EQUIP	SPACE HEATING	SPACE COOLING	HEAT REJECT	PUMPS & AUX	VENT FANS	REFRIG DISPLAY	HT PUMP SUPPLEM	DOMEST HOT WTR	EXT USAGE	TOTAL
M1 ELECTI MBTU	RICITY 732.0	0.0	387.0	451.1	269.7	0.0	42.3	124.3	0.0	0.0	0.0	211.7	2218.1
M1 NATURA MBTU	AL-GAS 0.0 =======	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	212.0	0.0	212.0
MBTU	732.0	0.0	387.0	451.1	269.7	0.0	42.3	124.3	0.0	0.0	212.0	211.7	2430.1
	tot tot	AL SITE E AL SOURCE	NERGY ENERGY	2430.12 6866.40	MBTU MBTU	27.9 KBI 78.9 KBI	U/SQFT-YR U/SQFT-YR	GROSS-AF	REA 27 REA 78	.9 KBTU/S	QFT-YR NE QFT-YR NE	T-AREA T-AREA	
	PER PER	CENT OF H	OURS ANY	SYSTEM ZO	NE OUTSIE D NOT SAI	E OF THRC	TTLING RA	NGE = 59. = 0.	.94				
	HOURS ANY ZONE ABOVE COOLING THROTTLING RANGE HOURS ANY ZONE BELOW HEATING THROTTLING RANGE								570				

REPORT- ES-D Energy Cost S	summary			WEATHER FI	LE- WASHINGT	JN, DC
JTILITY-RATE	RESOURCE	METERS	METERED ENERGY UNITS/YR	TOTAL CHARGE (\$)	VIRTUAL RATE (\$/UNIT)	RATE USED ALL YEAR?
Custom Elec Rate	ELECTRICITY	EM1	649914. KWH	78770.	0.1212	YES
Custom Gas Rate	NATURAL-GAS	FM1	2120. THERM	2417.	1.1400	YES
			=	81186.		
		ENEI El	RGY COST/GROSS BLDG AREA: NERGY COST/NET BLDG AREA:	0.93 0.93		

Option 4

Bre	nt ES - Ba	seline							DOE-	2.3-50h	9/30/20	20 14:	32:34 BE	LRUN 1
REP	ORT- BEPS	Building	Energy Pe	rformance						WE	ATHER FIL	E- WASHIN	GTON, DC	
		LIGHTS	TASK LIGHTS	MISC EQUIP	SPACE HEATING	SPACE COOLING	HEAT REJECT	PUMPS & AUX	VENT FANS	REFRIG DISPLAY	HT PUMP SUPPLEM	DOMEST HOT WTR	EXT USAGE	TOTAL
EM1	ELECTRIC MBTU	ITY 732.0	0.0	387.0	0.0	735.6	0.0	18.7	175.1	0.0	0.0	0.0	211.7	2260.0
FM1	NATURAL- MBTU	GAS 0.0	0.0	0.0	1902.0	0.0	0.0	0.0	0.0	0.0	0.0	212.1	0.0	2113.9
	MBTU	732.0	0.0	387.0	1902.0	735.6	0.0	18.7	175.1	0.0	0.0	212.1	211.7	4373.9
		tot tot per per hou hou not	AL SITE E AL SOURCE CENT OF H RS ANY ZC RS ANY ZC E: ENERG	NERGY ENERGY OURS ANY OURS ANY NE ABOVE NE BELOW Y IS APPO	4373.90 8893.96 SYSTEM ZO PLANT LOA COOLING T HEATING T ORTIONED H	MBTU MBTU NE OUTSII D NOT SAI HROTTLING HROTTLING OURLY TO	50.3 KBT 102.2 KBT DE OF THRC TISFIED RANGE RANGE ALL END-U	U/SQFT-YR U/SQFT-YR TTLING RA SE CATEGO	GROSS-AR GROSS-AR NGE = 0. = 0. = RIES.	EA 50 EA 102 07 00 0 2	.3 KBTU/S	QFT-YR NE QFT-YR NE	T-AREA T-AREA	

Brent ES - Baseline

Custom Gas Rate

REPORT- ES-D Energy Cost Summary

UTILITY-RATE RESOURCE METERS EM1 Custom Elec Rate ELECTRICITY

NATURAL-GAS

ENER El

FM1

1	DOE-2.3-50h	9/30/20	020 14:32:	34 BDL RUN
	W	EATHER FI	LE- WASHINGTO	N, DC
METERE	D	TOTAL	VIRTUAL	
ENERG	Y	CHARGE	RATE	RATE USED
UNITS/Y	R	(\$)	(\$/UNIT)	ALL YEAR?
662187. KW	н	80257.	0.1212	YES
21139. TH	ERM	24098.	1.1400	YES
		104355.		
RGY COST/GROSS BL	DG AREA:	1.20		
NERGY COST/NET BL	DG AREA:	1.20		

Option 5

REP	ORT- BEPS	Building	Energy Pe	rformance					WEATHER FILE- WASHINGTON, DC						
		LIGHTS	TASK LIGHTS	MISC EQUIP	SPACE HEATING	SPACE COOLING	HEAT REJECT	PUMPS & AUX	VENT FANS	REFRIG DISPLAY	HT PUMP SUPPLEM	DOMEST HOT WTR	EXT USAGE	TOTAL	
EM1	ELECTRIC MBTU	ITY 391.9	0.0	387.0	416.8	230.3	0.0	40.2	117.5	0.0	0.0	0.0	56.6	1640.	
FM1	NATURAL- MBTU	GAS 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	211.8	0.0	211.	
	MBTU	391.9	0.0	387.0	416.8	230.3	0.0	40.2	117.5	0.0	0.0	211.8	56.6	1852.	
		TOT	AL SITE E AL SOURCE	NERGY ENERGY	1852.24 5133.07	MBTU MBTU	21.3 KBT 59.0 KBT	U/SQFT-YR U/SQFT-YR	GROSS-AR GROSS-AR	EA 21 EA 59	.3 KBTU/S .0 KBTU/S	QFT-YR NE QFT-YR NE	T-AREA T-AREA		
		PER PER HOU HOU	CENT OF H CENT OF H IRS ANY ZO IRS ANY ZO	OURS ANY OURS ANY NE ABOVE NE BELOW	SYSTEM ZO PLANT LOA COOLING T HEATING T	NE OUTSIE D NOT SAT HROTTLING	DE OF THRO SISFIED RANGE RANGE	TTLING RA	NGE = 63. = 0. = = 17	82 00 0 78					
		NOT	'E: ENERG	Y IS APPO	RTIONED H	OURLY TO	ALL END-U	SE CATEGO	RIES.						

REPORT- ES-D Energy Cost Summary WEATHER FILE- WASHINGTON, DC						
UTILITY-RATE	RESOURCE	METERS	METERED ENERGY UNITS/YR	TOTAL CHARGE (\$)	VIRTUAL RATE (\$/UNIT)	RATE USEI ALL YEAR:
Custom Elec Rate	ELECTRICITY	EM1	480641. KWH	58254.	0.1212	YES
Custom Gas Rate	NATURAL-GAS	FM1	2118. THERM	2415.	1.1400	YES
			=	60668.		
		ENERGY COST/GROSS BLDG AREA: ENERGY COST/NET BLDG AREA:		0.70 0.70		

М

hord | coplan | macht

1275 K St NW Suite 1000 Washington DC 20005 +1 202.816.6692 MOYA / www.moyadesignpartners.com